mirror of
https://github.com/NohamR/OqeeAdWatch.git
synced 2026-01-10 00:08:17 +00:00
Moved database and scraping logic to utils/scrap.py for modularity. Added utils/visualizer.py for channel-level ad break analysis and plotting. Introduced .env.example for webhook configuration and updated main.py to support webhook heartbeats and improved logging. Updated README with new usage and visualization instructions. Added matplotlib and python-dotenv as dependencies.
313 lines
9.4 KiB
Python
313 lines
9.4 KiB
Python
"""Channel-level ad break visualizer."""
|
|
|
|
from __future__ import annotations
|
|
|
|
import argparse
|
|
from collections import defaultdict
|
|
from datetime import datetime, timedelta
|
|
import sqlite3
|
|
import statistics
|
|
from typing import Iterable, Sequence
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
# Allow running as a script from anywhere
|
|
sys.path.insert(0, str(Path(__file__).resolve().parent.parent))
|
|
from utils.scrap import DB_PATH, get_connection
|
|
|
|
Row = Sequence
|
|
|
|
|
|
def _merge_overlapping_breaks(rows: list[Row]) -> list[Row]:
|
|
"""Merge overlapping ad breaks to avoid double-counting."""
|
|
if not rows:
|
|
return []
|
|
|
|
# Sort by start time
|
|
sorted_rows = sorted(rows, key=lambda r: r[1])
|
|
merged = []
|
|
|
|
for row in sorted_rows:
|
|
_, start_ts, end_ts, _ = row
|
|
|
|
if not merged or merged[-1][2] < start_ts:
|
|
# No overlap with previous break
|
|
merged.append(row)
|
|
else:
|
|
# Overlap detected - merge with previous break
|
|
prev_row = merged[-1]
|
|
new_end = max(prev_row[2], end_ts)
|
|
# Keep the earlier ad_date for consistency
|
|
merged[-1] = (prev_row[0], prev_row[1], new_end, prev_row[3])
|
|
|
|
return merged
|
|
|
|
def _format_duration(seconds: int) -> str:
|
|
minutes, secs = divmod(seconds, 60)
|
|
hours, minutes = divmod(minutes, 60)
|
|
if hours:
|
|
return f"{hours}h {minutes}m {secs}s"
|
|
if minutes:
|
|
return f"{minutes}m {secs}s"
|
|
return f"{secs}s"
|
|
|
|
|
|
def _human_ts(ts_value: int) -> str:
|
|
return datetime.fromtimestamp(ts_value).strftime("%Y-%m-%d %H:%M:%S")
|
|
|
|
|
|
def _load_rows(channel_id: str) -> list[Row]:
|
|
conn = get_connection(DB_PATH)
|
|
try:
|
|
cursor = conn.execute(
|
|
"""
|
|
SELECT channel_id, start_ts, end_ts, ad_date
|
|
FROM ads WHERE channel_id = ?
|
|
ORDER BY start_ts ASC
|
|
""",
|
|
(channel_id,),
|
|
)
|
|
return cursor.fetchall()
|
|
except sqlite3.OperationalError as exc: # pragma: no cover - CLI helper
|
|
raise SystemExit(
|
|
"SQLite query failed. Ensure the collector ran at least once (table 'ads' must exist)."
|
|
) from exc
|
|
finally:
|
|
conn.close()
|
|
|
|
|
|
def _compute_stats(rows: Iterable[Row]) -> dict:
|
|
rows = list(rows)
|
|
if not rows:
|
|
return {}
|
|
|
|
# Merge overlapping breaks to avoid double-counting
|
|
merged_rows = _merge_overlapping_breaks(rows)
|
|
durations = [row[2] - row[1] for row in merged_rows]
|
|
total_duration = sum(durations)
|
|
|
|
per_day = defaultdict(list)
|
|
for row, duration in zip(merged_rows, durations):
|
|
per_day[row[3]].append(duration)
|
|
|
|
daily_summary = [
|
|
{
|
|
"date": day,
|
|
"count": len(day_durations),
|
|
"total": sum(day_durations),
|
|
"avg": sum(day_durations) / len(day_durations),
|
|
}
|
|
for day, day_durations in sorted(per_day.items())
|
|
]
|
|
|
|
return {
|
|
"count": len(merged_rows),
|
|
"first_start": merged_rows[0][1],
|
|
"last_end": merged_rows[-1][2],
|
|
"total_duration": total_duration,
|
|
"mean_duration": statistics.mean(durations),
|
|
"median_duration": statistics.median(durations),
|
|
"max_break": max(zip(durations, merged_rows), key=lambda item: item[0]),
|
|
"daily_summary": daily_summary,
|
|
}
|
|
|
|
|
|
def _compute_hourly_profile(rows: Iterable[Row]) -> dict:
|
|
rows = list(rows)
|
|
if not rows:
|
|
return {}
|
|
|
|
# Merge overlapping breaks to avoid double-counting
|
|
merged_rows = _merge_overlapping_breaks(rows)
|
|
|
|
hourly_counts = [0] * 24
|
|
hourly_duration = [0] * 24
|
|
seen_days = set()
|
|
|
|
for row in merged_rows:
|
|
start_dt = datetime.fromtimestamp(row[1])
|
|
seen_days.add(start_dt.date())
|
|
hour = start_dt.hour
|
|
duration = row[2] - row[1]
|
|
hourly_counts[hour] += 1
|
|
hourly_duration[hour] += duration
|
|
|
|
return {
|
|
"days": len(seen_days),
|
|
"counts": hourly_counts,
|
|
"durations": hourly_duration,
|
|
}
|
|
|
|
|
|
def _compute_heatmap(rows: Iterable[Row]) -> dict:
|
|
rows = list(rows)
|
|
if not rows:
|
|
return {}
|
|
|
|
# Merge overlapping breaks to avoid double-counting
|
|
merged_rows = _merge_overlapping_breaks(rows)
|
|
|
|
heatmap = [[0.0 for _ in range(24)] for _ in range(60)]
|
|
seen_days: set = set()
|
|
|
|
for row in merged_rows:
|
|
start_ts, end_ts = row[1], row[2]
|
|
if start_ts >= end_ts:
|
|
continue
|
|
|
|
# Track every day touched by this break for normalization later.
|
|
day_cursor = datetime.fromtimestamp(start_ts).date()
|
|
last_day = datetime.fromtimestamp(end_ts - 1).date()
|
|
while day_cursor <= last_day:
|
|
seen_days.add(day_cursor)
|
|
day_cursor += timedelta(days=1)
|
|
|
|
bucket_start = (start_ts // 60) * 60
|
|
bucket_end = ((end_ts + 59) // 60) * 60
|
|
|
|
current = bucket_start
|
|
while current < bucket_end:
|
|
next_bucket = current + 60
|
|
overlap = max(0, min(end_ts, next_bucket) - max(start_ts, current))
|
|
if overlap > 0:
|
|
dt = datetime.fromtimestamp(current)
|
|
heatmap[dt.minute][dt.hour] += overlap
|
|
current = next_bucket
|
|
|
|
return {"grid": heatmap, "days": len(seen_days)}
|
|
|
|
|
|
def _print_stats(channel_id: str, stats: dict) -> None:
|
|
if not stats:
|
|
print(f"No ad breaks recorded for channel '{channel_id}'.")
|
|
return
|
|
|
|
duration_fmt = _format_duration
|
|
max_break_duration, max_break_row = stats["max_break"]
|
|
|
|
print("\n=== Channel overview ===")
|
|
print(f"Channel ID : {channel_id}")
|
|
print(f"Total ad breaks : {stats['count']}")
|
|
print(f"First ad start : {_human_ts(stats['first_start'])}")
|
|
print(f"Latest ad end : {_human_ts(stats['last_end'])}")
|
|
print(f"Total ad duration : {duration_fmt(stats['total_duration'])}")
|
|
print(f"Mean break length : {duration_fmt(int(stats['mean_duration']))}")
|
|
print(f"Median break len : {duration_fmt(int(stats['median_duration']))}")
|
|
print(
|
|
"Longest break : "
|
|
f"{duration_fmt(max_break_duration)} "
|
|
f"({_human_ts(max_break_row[1])} -> {_human_ts(max_break_row[2])})"
|
|
)
|
|
|
|
print("\n=== Per-day breakdown ===")
|
|
print("Date | Breaks | Total duration | Avg duration")
|
|
print("------------+--------+----------------+-------------")
|
|
for entry in stats["daily_summary"]:
|
|
print(
|
|
f"{entry['date']} | "
|
|
f"{entry['count']:6d} | "
|
|
f"{duration_fmt(entry['total']).rjust(14)} | "
|
|
f"{duration_fmt(int(entry['avg'])).rjust(11)}"
|
|
)
|
|
|
|
|
|
def _plot_hourly_profile(channel_id: str, profile: dict) -> None:
|
|
if not profile:
|
|
print("No data available for the hourly plot.")
|
|
return
|
|
if not profile["days"]:
|
|
print("Not enough distinct days to build an hourly average plot.")
|
|
return
|
|
|
|
hours = list(range(24))
|
|
avg_duration_minutes = [
|
|
(profile["durations"][hour] / profile["days"]) / 60 for hour in hours
|
|
]
|
|
avg_counts = [profile["counts"][hour] / profile["days"] for hour in hours]
|
|
|
|
fig, ax_left = plt.subplots(figsize=(10, 5))
|
|
ax_left.bar(hours, avg_duration_minutes, color="tab:blue", alpha=0.7)
|
|
ax_left.set_xlabel("Hour of day")
|
|
ax_left.set_ylabel("Avg ad duration per day (min)", color="tab:blue")
|
|
ax_left.set_xticks(hours)
|
|
ax_left.set_xlim(-0.5, 23.5)
|
|
|
|
ax_right = ax_left.twinx()
|
|
ax_right.plot(hours, avg_counts, color="tab:orange", marker="o")
|
|
ax_right.set_ylabel("Avg number of breaks", color="tab:orange")
|
|
|
|
fig.suptitle(
|
|
f"Average ad activity for channel {channel_id} across {profile['days']} day(s)"
|
|
)
|
|
fig.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
def _plot_heatmap(channel_id: str, heatmap: dict) -> None:
|
|
if not heatmap:
|
|
print("No data available for the heatmap plot.")
|
|
return
|
|
days = heatmap.get("days", 0)
|
|
if not days:
|
|
print("Not enough distinct days to build a heatmap.")
|
|
return
|
|
|
|
normalized = [
|
|
[min(value / (60 * days), 1.0) for value in row]
|
|
for row in heatmap["grid"]
|
|
]
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 5))
|
|
im = ax.imshow(
|
|
normalized,
|
|
origin="lower",
|
|
aspect="auto",
|
|
cmap="Reds",
|
|
extent=[0, 24, 0, 60],
|
|
vmin=0,
|
|
vmax=1,
|
|
)
|
|
ax.set_xlabel("Hour of day")
|
|
ax.set_ylabel("Minute within hour")
|
|
ax.set_xticks(range(0, 25, 2))
|
|
ax.set_yticks(range(0, 61, 10))
|
|
|
|
cbar = fig.colorbar(im, ax=ax)
|
|
cbar.set_label("Share of minute spent in ads per day")
|
|
|
|
fig.suptitle(
|
|
f"Ad minute coverage for channel {channel_id} across {days} day(s)"
|
|
)
|
|
fig.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
def main() -> None:
|
|
"""CLI entrypoint for visualizing ad breaks."""
|
|
parser = argparse.ArgumentParser(
|
|
description="Inspect ad breaks for a single channel from the local database.",
|
|
)
|
|
parser.add_argument("channel_id", help="Exact channel identifier to inspect")
|
|
parser.add_argument(
|
|
"--no-plot",
|
|
action="store_true",
|
|
help="Skip the matplotlib chart and only print textual stats.",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
rows = _load_rows(args.channel_id)
|
|
stats = _compute_stats(rows)
|
|
_print_stats(args.channel_id, stats)
|
|
|
|
if not args.no_plot:
|
|
hourly_profile = _compute_hourly_profile(rows)
|
|
_plot_hourly_profile(args.channel_id, hourly_profile)
|
|
heatmap = _compute_heatmap(rows)
|
|
_plot_heatmap(args.channel_id, heatmap)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|