Files
OqeeAdWatch/utils/visualizer.py
√(noham)² 4d4c470410 Refactor core logic and add visualization tools
Moved database and scraping logic to utils/scrap.py for modularity. Added utils/visualizer.py for channel-level ad break analysis and plotting. Introduced .env.example for webhook configuration and updated main.py to support webhook heartbeats and improved logging. Updated README with new usage and visualization instructions. Added matplotlib and python-dotenv as dependencies.
2025-11-30 14:45:43 +01:00

313 lines
9.4 KiB
Python

"""Channel-level ad break visualizer."""
from __future__ import annotations
import argparse
from collections import defaultdict
from datetime import datetime, timedelta
import sqlite3
import statistics
from typing import Iterable, Sequence
import sys
from pathlib import Path
import matplotlib.pyplot as plt
# Allow running as a script from anywhere
sys.path.insert(0, str(Path(__file__).resolve().parent.parent))
from utils.scrap import DB_PATH, get_connection
Row = Sequence
def _merge_overlapping_breaks(rows: list[Row]) -> list[Row]:
"""Merge overlapping ad breaks to avoid double-counting."""
if not rows:
return []
# Sort by start time
sorted_rows = sorted(rows, key=lambda r: r[1])
merged = []
for row in sorted_rows:
_, start_ts, end_ts, _ = row
if not merged or merged[-1][2] < start_ts:
# No overlap with previous break
merged.append(row)
else:
# Overlap detected - merge with previous break
prev_row = merged[-1]
new_end = max(prev_row[2], end_ts)
# Keep the earlier ad_date for consistency
merged[-1] = (prev_row[0], prev_row[1], new_end, prev_row[3])
return merged
def _format_duration(seconds: int) -> str:
minutes, secs = divmod(seconds, 60)
hours, minutes = divmod(minutes, 60)
if hours:
return f"{hours}h {minutes}m {secs}s"
if minutes:
return f"{minutes}m {secs}s"
return f"{secs}s"
def _human_ts(ts_value: int) -> str:
return datetime.fromtimestamp(ts_value).strftime("%Y-%m-%d %H:%M:%S")
def _load_rows(channel_id: str) -> list[Row]:
conn = get_connection(DB_PATH)
try:
cursor = conn.execute(
"""
SELECT channel_id, start_ts, end_ts, ad_date
FROM ads WHERE channel_id = ?
ORDER BY start_ts ASC
""",
(channel_id,),
)
return cursor.fetchall()
except sqlite3.OperationalError as exc: # pragma: no cover - CLI helper
raise SystemExit(
"SQLite query failed. Ensure the collector ran at least once (table 'ads' must exist)."
) from exc
finally:
conn.close()
def _compute_stats(rows: Iterable[Row]) -> dict:
rows = list(rows)
if not rows:
return {}
# Merge overlapping breaks to avoid double-counting
merged_rows = _merge_overlapping_breaks(rows)
durations = [row[2] - row[1] for row in merged_rows]
total_duration = sum(durations)
per_day = defaultdict(list)
for row, duration in zip(merged_rows, durations):
per_day[row[3]].append(duration)
daily_summary = [
{
"date": day,
"count": len(day_durations),
"total": sum(day_durations),
"avg": sum(day_durations) / len(day_durations),
}
for day, day_durations in sorted(per_day.items())
]
return {
"count": len(merged_rows),
"first_start": merged_rows[0][1],
"last_end": merged_rows[-1][2],
"total_duration": total_duration,
"mean_duration": statistics.mean(durations),
"median_duration": statistics.median(durations),
"max_break": max(zip(durations, merged_rows), key=lambda item: item[0]),
"daily_summary": daily_summary,
}
def _compute_hourly_profile(rows: Iterable[Row]) -> dict:
rows = list(rows)
if not rows:
return {}
# Merge overlapping breaks to avoid double-counting
merged_rows = _merge_overlapping_breaks(rows)
hourly_counts = [0] * 24
hourly_duration = [0] * 24
seen_days = set()
for row in merged_rows:
start_dt = datetime.fromtimestamp(row[1])
seen_days.add(start_dt.date())
hour = start_dt.hour
duration = row[2] - row[1]
hourly_counts[hour] += 1
hourly_duration[hour] += duration
return {
"days": len(seen_days),
"counts": hourly_counts,
"durations": hourly_duration,
}
def _compute_heatmap(rows: Iterable[Row]) -> dict:
rows = list(rows)
if not rows:
return {}
# Merge overlapping breaks to avoid double-counting
merged_rows = _merge_overlapping_breaks(rows)
heatmap = [[0.0 for _ in range(24)] for _ in range(60)]
seen_days: set = set()
for row in merged_rows:
start_ts, end_ts = row[1], row[2]
if start_ts >= end_ts:
continue
# Track every day touched by this break for normalization later.
day_cursor = datetime.fromtimestamp(start_ts).date()
last_day = datetime.fromtimestamp(end_ts - 1).date()
while day_cursor <= last_day:
seen_days.add(day_cursor)
day_cursor += timedelta(days=1)
bucket_start = (start_ts // 60) * 60
bucket_end = ((end_ts + 59) // 60) * 60
current = bucket_start
while current < bucket_end:
next_bucket = current + 60
overlap = max(0, min(end_ts, next_bucket) - max(start_ts, current))
if overlap > 0:
dt = datetime.fromtimestamp(current)
heatmap[dt.minute][dt.hour] += overlap
current = next_bucket
return {"grid": heatmap, "days": len(seen_days)}
def _print_stats(channel_id: str, stats: dict) -> None:
if not stats:
print(f"No ad breaks recorded for channel '{channel_id}'.")
return
duration_fmt = _format_duration
max_break_duration, max_break_row = stats["max_break"]
print("\n=== Channel overview ===")
print(f"Channel ID : {channel_id}")
print(f"Total ad breaks : {stats['count']}")
print(f"First ad start : {_human_ts(stats['first_start'])}")
print(f"Latest ad end : {_human_ts(stats['last_end'])}")
print(f"Total ad duration : {duration_fmt(stats['total_duration'])}")
print(f"Mean break length : {duration_fmt(int(stats['mean_duration']))}")
print(f"Median break len : {duration_fmt(int(stats['median_duration']))}")
print(
"Longest break : "
f"{duration_fmt(max_break_duration)} "
f"({_human_ts(max_break_row[1])} -> {_human_ts(max_break_row[2])})"
)
print("\n=== Per-day breakdown ===")
print("Date | Breaks | Total duration | Avg duration")
print("------------+--------+----------------+-------------")
for entry in stats["daily_summary"]:
print(
f"{entry['date']} | "
f"{entry['count']:6d} | "
f"{duration_fmt(entry['total']).rjust(14)} | "
f"{duration_fmt(int(entry['avg'])).rjust(11)}"
)
def _plot_hourly_profile(channel_id: str, profile: dict) -> None:
if not profile:
print("No data available for the hourly plot.")
return
if not profile["days"]:
print("Not enough distinct days to build an hourly average plot.")
return
hours = list(range(24))
avg_duration_minutes = [
(profile["durations"][hour] / profile["days"]) / 60 for hour in hours
]
avg_counts = [profile["counts"][hour] / profile["days"] for hour in hours]
fig, ax_left = plt.subplots(figsize=(10, 5))
ax_left.bar(hours, avg_duration_minutes, color="tab:blue", alpha=0.7)
ax_left.set_xlabel("Hour of day")
ax_left.set_ylabel("Avg ad duration per day (min)", color="tab:blue")
ax_left.set_xticks(hours)
ax_left.set_xlim(-0.5, 23.5)
ax_right = ax_left.twinx()
ax_right.plot(hours, avg_counts, color="tab:orange", marker="o")
ax_right.set_ylabel("Avg number of breaks", color="tab:orange")
fig.suptitle(
f"Average ad activity for channel {channel_id} across {profile['days']} day(s)"
)
fig.tight_layout()
plt.show()
def _plot_heatmap(channel_id: str, heatmap: dict) -> None:
if not heatmap:
print("No data available for the heatmap plot.")
return
days = heatmap.get("days", 0)
if not days:
print("Not enough distinct days to build a heatmap.")
return
normalized = [
[min(value / (60 * days), 1.0) for value in row]
for row in heatmap["grid"]
]
fig, ax = plt.subplots(figsize=(10, 5))
im = ax.imshow(
normalized,
origin="lower",
aspect="auto",
cmap="Reds",
extent=[0, 24, 0, 60],
vmin=0,
vmax=1,
)
ax.set_xlabel("Hour of day")
ax.set_ylabel("Minute within hour")
ax.set_xticks(range(0, 25, 2))
ax.set_yticks(range(0, 61, 10))
cbar = fig.colorbar(im, ax=ax)
cbar.set_label("Share of minute spent in ads per day")
fig.suptitle(
f"Ad minute coverage for channel {channel_id} across {days} day(s)"
)
fig.tight_layout()
plt.show()
def main() -> None:
"""CLI entrypoint for visualizing ad breaks."""
parser = argparse.ArgumentParser(
description="Inspect ad breaks for a single channel from the local database.",
)
parser.add_argument("channel_id", help="Exact channel identifier to inspect")
parser.add_argument(
"--no-plot",
action="store_true",
help="Skip the matplotlib chart and only print textual stats.",
)
args = parser.parse_args()
rows = _load_rows(args.channel_id)
stats = _compute_stats(rows)
_print_stats(args.channel_id, stats)
if not args.no_plot:
hourly_profile = _compute_hourly_profile(rows)
_plot_hourly_profile(args.channel_id, hourly_profile)
heatmap = _compute_heatmap(rows)
_plot_heatmap(args.channel_id, heatmap)
if __name__ == "__main__":
main()