Initial commit

This commit is contained in:
√(noham)²
2023-07-18 16:20:23 +02:00
commit 004f3ab862
11 changed files with 631 additions and 0 deletions

15
test/color.py Normal file
View File

@@ -0,0 +1,15 @@
from colour import Color
def rainbow_gradient(num_colors):
colors = []
base_color = Color("red")
gradient = list(base_color.range_to(Color("violet"), num_colors))
for color in gradient:
hex_code = color.hex_l
colors.append(hex_code)
return colors
num_colors = 10
gradient = rainbow_gradient(num_colors)
print(gradient)

45
test/model.py Normal file
View File

@@ -0,0 +1,45 @@
import numpy as np
import matplotlib.pyplot as plt
import time
t0 = 0
tf = 20
# tf=3
dt = 1
t = t0
U = 1.25 # vitesse m.s-¹
Wm = 0.3 # distance minimale entre la voiture et celle qui la précède m
Ws = 0.9 # m
ww = np.linspace(0, 10, 200)
def phi(ww): # prend en entrée la distance entre les deux véhicules
PHI = (U*(1 - np.exp(- (ww-Wm)/Ws)))
return (ww >= Wm)* PHI # retourne la vitesse du véhicule
y = np.linspace(0, 0, 11)
xxbase = np.linspace(0, 1, 11)
def position(fposition):
dist = np.diff(fposition)
vitesses = phi(dist)
newv = np.insert(vitesses, 10, 1.25)
newp = fposition + newv * dt
return newp
xxold = xxbase.copy()
while(t<tf):
plt.figure(1,figsize=[16,9])
plt.clf()
plt.xlim([-1,10])
xx = position(xxold)
color = ['#ff0000', '#ff5300', '#ffa500', '#ffd200', '#ffff00', '#80c000', '#008000', '#004080', '#0000ff', '#2600c1', '#4b0082']
plt.scatter(xx, y, c=color)
plt.draw()
# plt.savefig(str(t)+'.png')
plt.pause(0.1)
t += dt
xxold = xx.copy()

BIN
test/phi(ww).png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 133 KiB

18
test/phi(ww).py Normal file
View File

@@ -0,0 +1,18 @@
import numpy as np
import matplotlib.pyplot as plt
U = 1.25 # vitesse m.s-¹
Wm = 0.3 # distance minimale entre la voiture et celle qui la précède m
Ws = 0.9 # m
ww = np.linspace(0, 10, 200)
def phi(ww):
PHI = (U*(1 - np.exp(- (ww-Wm)/Ws)))
return (ww >= Wm)* PHI
plt.figure(figsize=[16,9])
plt.xlabel('distance w en m')
plt.ylabel('vitesse en m.s-¹')
plt.plot(ww, phi(ww))
plt.savefig('phi(ww).png', dpi=300)
plt.show()

59
test/polaire.py Normal file
View File

@@ -0,0 +1,59 @@
import numpy as np
import matplotlib.pyplot as plt
import time
t0 = 0
tf = 100
dt = 0.5
t = t0
U = 1.25 # vitesse m.s-¹
Wm = 0.3 # distance minimale entre la voiture et celle qui la précède m
Ws = 0.9 # m
def phi(ww): # prend en entrée la distance entre les deux véhicules
PHI = (U*(1 - np.exp(- (ww-Wm)/Ws)))
return (ww >= Wm)* PHI # retourne la vitesse du véhicule
y = np.linspace(1, 1, 11)
xxbase = np.linspace(0, 1, 11)
def position(fposition, newv):
newp = fposition + newv * dt
return newp
def vitesses(fposition):
print('fposition', fposition)
dist = np.diff(fposition)
print('distance : ', dist)
vitesses = phi(dist)
newv = np.insert(vitesses, 10, 1.25)
return newv
xxold = xxbase.copy()
while(t<tf):
plt.figure(1,figsize=[16,9])
plt.clf()
nb = 360
r=np.linspace(1,1,nb)
theta=np.linspace(0,2*np.pi,nb)
plt.polar(theta, r)
# plt.scatter(1*np.pi, 0.5)
vt = vitesses(xxold)
print('vitesses : ', vt)
xx = position(xxold, vt)
print('position : ', xx)
color = ['#ff0000', '#ff5300', '#ffa500', '#ffd200', '#ffff00', '#80c000', '#008000', '#004080', '#0000ff', '#2600c1', '#4b0082']
plt.scatter(xx/10*np.pi, y, c=color)
plt.draw()
plt.pause(0.00001)
t += dt
xxold = xx.copy()

34
test/status.py Normal file
View File

@@ -0,0 +1,34 @@
from colour import Color
def rainbow_gradient(distances):
num_colors = len(distances)
colors = []
base_color = Color("green")
target_color = Color("red")
luminance_start = base_color.get_luminance()
luminance_end = target_color.get_luminance()
for i in range(num_colors):
moydist = distances[i]
t = i / (num_colors - 1) # Interpolation paramètre t
adjusted_luminance = luminance_start + (luminance_end - luminance_start) * (1 - t) * (moydist - 1) / 18
color = Color(rgb=(base_color.rgb[0] * (1 - t) + target_color.rgb[0] * t,
base_color.rgb[1] * (1 - t) + target_color.rgb[1] * t,
base_color.rgb[2] * (1 - t) + target_color.rgb[2] * t))
color.set_luminance(adjusted_luminance)
hex_code = color.hex_l
colors.append(hex_code)
return colors
distances = [0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 19.0]
gradient = rainbow_gradient(distances)
print(gradient)