changes mod

This commit is contained in:
NohamR 2023-08-03 20:30:03 +02:00
parent 083702f6d3
commit 2be296f9ae
56 changed files with 2154 additions and 755 deletions

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 21 KiB

View File

@ -1,182 +0,0 @@
\documentclass[a4paper]{article}
\usepackage[margin=25mm]{geometry}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{graphicx}
\pagenumbering{gobble}
\usepackage{verbatim}
\usepackage[utf8]{inputenc}
\usepackage[french,english]{babel}
\usepackage{tikz}
\usepackage{xcolor}
\newtheorem{theorem}{Th\'eor\`eme}[subsection]
\newtheorem{proposition}{Proposition}[subsection]
\newtheorem{definition}{D\'efinition}[subsection]
\newtheorem{lemma}{Lemme}[subsection]
\newtheorem{model}{Mod\`ele}[subsection]
\newtheorem{algorithm}{Algorithme}[subsection]
\newtheorem{problem}{Probl\`eme}[subsection]
\newtheorem{remark}{Remarque}[subsection]
%\newcommand{\Id}{\mathbf{Id}}
%\newcommand{\ie}{$i. e.\ $}
%\newcommand{\eg}{$e. g.\ $}
%\newcommand{\st}{ such that }
%\newcommand{\Div}{\mbox{div }}
%\newcommand{\Curl}{\mbox{curl }}
% Keywords command
\providecommand{\keywords}[1]
{
\small
\textbf{\textit{Keywords---}} #1
}
\title{Titre du rapport}
\author{Premier Auteur$^{1}$, Second Auteur$^{2}$ \\
\small $^{1}$L3 LDD Informatique, Mathématiques, Université Paris-Saclay, 91405 Orsay, France \\
\small $^{2}$L3 LDD Mathématiques, Physique, Université Paris-Saclay, 91405 Orsay, France \\
}
\date{} % Comment this line to show today's date
\makeindex
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\selectlanguage{french}
\maketitle
\begin{tikzpicture}[overlay,yshift=5cm, xshift=13.4cm]
\pgftext{\includegraphics[width=90pt]{logo-ups.png}}
\end{tikzpicture}
\begin{abstract}
{\color{blue}Résumé en français...}
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum pretium libero non odio tincidunt semper. Vivamus sollicitudin egestas mattis. Sed vitae risus vel ex tincidunt molestie nec vel leo. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Maecenas quis massa tincidunt, faucibus magna non, fringilla sapien. In ullamcorper justo a scelerisque egestas. Ut maximus, elit a rutrum viverra, lectus sapien varius est, vel tempor neque mi et augue. Fusce ornare venenatis nunc nec feugiat. Proin a enim mauris. Mauris dignissim vulputate erat, vitae cursus risus elementum at. Cras luctus pharetra congue. Aliquam id est dictum, finibus ligula sed, tempus arcu.
\end{abstract}
\hspace{10pt}
\selectlanguage{english}
\begin{abstract}
{\color{blue}Abstract in English... }
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum pretium libero non odio tincidunt semper. Vivamus sollicitudin egestas mattis. Sed vitae risus vel ex tincidunt molestie nec vel leo. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Maecenas quis massa tincidunt, faucibus magna non, fringilla sapien. In ullamcorper justo a scelerisque egestas. Ut maximus, elit a rutrum viverra, lectus sapien varius est, vel tempor neque mi et augue. Fusce ornare venenatis nunc nec feugiat. Proin a enim mauris. Mauris dignissim vulputate erat, vitae cursus risus elementum at. Cras luctus pharetra congue. Aliquam id est dictum, finibus ligula sed, tempus arcu.
\end{abstract}
\selectlanguage{french}
%TC:ignore
\keywords{mot clé; mot clé; mot clé}
\clearpage
\section{Introduction}
Aenean tellus orci, accumsan $i$ nec neque at, vestibulum eleifend elit \cite{helbing09,SchadCA09} ({\color{blue}bien cité dans le texte de l'article toute référence présente dans la bibliographie}) Sed luctus enim dui, in fermentum $j$ dui pharetra at. Fusce vel nisl et diam feugiat porttitor et at libero. Maecenas scelerisque varius mauris non euismod. Nulla eget cursus leo. Integer interdum lacus vel ligula maximus, at feugiat orci porttitor. Suspendisse egestas, lorem a \index{elementum} lobortis, tellus mauris hendrerit nunc, sed vestibulum mi velit quis risus. Mauris gravida mi et ullamcorper blandit. Aenean lacinia, quam id tempus interdum, massa orci rhoncus turpis, eu finibus nisi lectus id sem. Vivamus ut mauris sed diam porta viverra sit amet quis risus (\cite{Zuriguel09}).
Nam id ornare dolor. Nulla metus enim, venenatis vel dui ac, accumsan vehicula est. Suspendisse luctus eros et velit eleifend, nec finibus ante rutrum. Interdum et malesuada fames ac ante ipsum primis {\em systemic} in faucibus. Vivamus tempor lorem turpis, nec venenatis turpis venenatis nec. Integer hendrerit at mi nec aliquet. Vestibulum auctor arcu scelerisque lacus rhoncus ornare. Vivamus convallis libero nulla, vitae ullamcorper mauris venenatis nec. Donec elementum ligula non tortor \index{pellentesque} finibus.
Vestibulum mauris odio, scelerisque ut nisi ut, tincidunt maximus eros. Fusce tempor ex non mi commodo consectetur. Sed sit amet massa id elit commodo bibendum. Nunc id neque tempus erat tempus dictum. Fusce mi leo, hendrerit in egestas sed, faucibus vel ex. In hac habitasse platea dictumst. Vivamus eget odio arcu. Ut finibus et lacus ac interdum. Donec consectetur dolor neque, vel condimentum nunc varius nec. Mauris sapien dolor, aliquam nec vulputate at, fermentum vel nulla. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Nam posuere vulputate vestibulum.
\section{Première section}
Integer iaculis vitae nisi mollis congue. Cras sed facilisis tortor. Aliquam quis neque ipsum. Proin et accumsan arcu. Donec sit amet nibh lacus. Vestibulum mattis arcu sed ante \index{vestibulum} condimentum. Nunc auctor ligula vel velit finibus imperdiet. Cras consequat ipsum quis rhoncus consequat. Etiam luctus purus turpis, quis tempor massa posuere non. Donec vitae $\Phi$ ex in ligula ultricies feugiat. Sed urna sem, rutrum at tempus vel, mollis vel magna. Etiam ex est, pulvinar et risus at, facilisis efficitur turpis. Etiam egestas est a erat elementum, vitae porta lectus finibus. Donec ac consequat sapien. Aenean sed eros a est blandit dictum.\\
{\color{blue}Equation numérotée pouvant être citée (\ref{eq:eq1}) : }
\begin{equation}
\label{eq:eq1}
( a + b )^2 = a^2 + b^2 + 2 a b.
\end{equation}
\noindent{\color{blue}Système d'équations : }
\begin{eqnarray}
\label{eq:eq2}
( a + b )^2 &=& a^2 + b^2 + 2 a b,\\
( a - b )^2 &=& a^2 + b^2 - 2 a b.
\end{eqnarray}
Quisque in dui porttitor, finibus lacus quis, pretium dui. Nullam vitae augue ligula. Nulla vel nisl tincidunt, ullamcorper enim nec, sollicitudin justo. Praesent vitae ex elit. Sed placerat velit a lectus fringilla, in tempor lorem efficitur. Maecenas mattis $n = 1,\dots,m_i$, tellus ipsum, a laoreet quam aliquam eu. Donec eu interdum lectus. Morbi suscipit nibh (\ref{eq:eq1})sed enim interdum, eget aliquam odio ullamcorper. Sed at mauris maximus, mollis mi ut, dapibus mauris. Morbi efficitur ultricies massa, et vulputate est pellentesque nec $\alpha_i^n$. Curabitur rutrum ullamcorper efficitur. Curabitur vestibulum consequat orci quis dapibus. Ut a ullamcorper tellus. Proin fermentum malesuada dui ac mollis. Mauris volutpat finibus lacus et placerat. \\
{\color{blue}Equation non numérotée : }
\begin{equation*}
( a - b )^2 = a^2 + b^2 - 2 a b.
\end{equation*}
\section{Seconde section}
\subsection{Première sous-section}
Curabitur nulla libero, viverra at tempus vitae, ornare ac metus. Nullam sed imperdiet erat, a vestibulum arcu. Sed non nisi cursus, sagittis libero in, pellentesque est. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Interdum et malesuada fames ac ante ipsum primis in faucibus. Sed congue turpis ligula, et tristique neque scelerisque sit amet. Vivamus neque est, pharetra eu libero at, tincidunt feugiat augue.
\begin{definition}
On appelle...
\end{definition}
\subsection{Seconde sous-section}
\begin{theorem}
Soit une fonction $\Phi$...
\end{theorem}
\begin{lemma}
Soit $x \in \mathbf{R}$,...
\end{lemma}
\begin{remark}
On remarque que...
\end{remark}
Morbi mollis sapien nisi, non fringilla felis placerat vitae. Donec ac enim justo. Cras placerat purus vel ex volutpat, eget placerat lorem fermentum. Duis quam risus, eleifend quis iaculis eu, efficitur at nisl. Pellentesque pharetra dui nisi, sit amet sodales mi hendrerit nec. Nullam et gravida lorem, ut faucibus dolor. Mauris bibendum pulvinar tortor, eget consequat nulla luctus eget.
\begin{figure}[t]
\begin{center}
\includegraphics[width=0.295\linewidth]{terre.png}
\end{center}
\caption{La Terre}
\label{fig:fig1}
\end{figure}
{\color{blue}Bien penser à citer et à commenter toutes les figures du texte : (Figure \ref{fig:fig1})}
Quisque in dui porttitor, finibus lacus quis, pretium dui. Nullam vitae augue ligula. Nulla vel nisl tincidunt, ullamcorper enim nec, sollicitudin justo. Praesent vitae ex elit. Sed placerat velit a lectus fringilla, in tempor lorem efficitur. Maecenas mattis tellus ipsum, a laoreet quam aliquam eu. Donec eu interdum lectus. Morbi suscipit nibh sed enim interdum, eget aliquam odio ullamcorper. Sed at
\section{Conclusion}
Curabitur nulla libero, viverra at tempus vitae, ornare ac metus. Nullam sed imperdiet erat, a vestibulum arcu. Sed non nisi cursus, sagittis libero in, pellentesque est. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Interdum et malesuada fames ac ante ipsum primis in faucibus. Sed congue turpis ligula, et tristique neque scelerisque sit amet. Vivamus neque est, pharetra eu libero at, tincidunt feugiat augue.
\section*{Remerciements}
Les auteurs de ce document remercient vivement...
\begin{thebibliography}{99}
\bibitem{helbing09}
D. Helbing,
A. Johansson,
Pedestrian, Crowd and Evacuation Dynamics,
\emph{Encyclopedia of Complexity and Systems Science},
pp. 6476--6495, Springer New York.
\bibitem{SchadCA09}
A. Schadschneider, A. Seyfried, Empirical results for pedestrian dynamics and their implications for cellular automata models,
in``Pedestrian Behavior'', Ed.: H. Timmermans, Emerald, p. 27 (2009).
\bibitem{Zuriguel09}
I. Zuriguel, J. Olivares, J.M. Pastor, C. Mart\'in-G\'omez, L.M. Ferrer, J.J. Ramos, A. Garcimart\'in,
Effect of obstacle position in the flow of sheep through a narrow door,
\emph{Phys. Rev. E}, 94.
\end{thebibliography}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 886 KiB

View File

Before

Width:  |  Height:  |  Size: 3.5 MiB

After

Width:  |  Height:  |  Size: 3.5 MiB

View File

Before

Width:  |  Height:  |  Size: 2.9 MiB

After

Width:  |  Height:  |  Size: 2.9 MiB

View File

Before

Width:  |  Height:  |  Size: 1.9 MiB

After

Width:  |  Height:  |  Size: 1.9 MiB

View File

Before

Width:  |  Height:  |  Size: 3.4 MiB

After

Width:  |  Height:  |  Size: 3.4 MiB

View File

Before

Width:  |  Height:  |  Size: 3.7 MiB

After

Width:  |  Height:  |  Size: 3.7 MiB

View File

@ -0,0 +1,156 @@
import cv2
import numpy as np
import argparse
import time
import os
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse, Circle, Rectangle, Polygon, Arrow
from matplotlib.lines import Line2D
from matplotlib.collections import EllipseCollection, LineCollection
import sys
from scipy.optimize import least_squares
from scipy.spatial import cKDTree
from imageio import imread
from matplotlib.offsetbox import TextArea, DrawingArea, OffsetImage, AnnotationBbox
from shapely.geometry import Point
import geopandas as gpd
# import cartopy
# import cartopy.crs as ccrs
import cameratransform as ct
import geodatasets
img = cv2.imread("track/Sylvain/stage_Noham/stage_Noham/image_vide_pts.png")
nh,nw,_ = img.shape
## img : b g r
mask = (img[:,:,0]==0)*(img[:,:,1]==0)*(img[:,:,2]==255)
ind_px_ground_pts = np.where(mask)
px_ground_pts = np.vstack([ind_px_ground_pts[1],ind_px_ground_pts[0]]).T
mask2 = (img[:,:,0]==255)*(img[:,:,1]==0)*(img[:,:,2]==0)
ind_px_ground_pts2 = np.where(mask2)
px_ground_pts2 = np.vstack([ind_px_ground_pts2[1],ind_px_ground_pts2[0]]).T
img_pts = img.copy()
for i,pt in enumerate(px_ground_pts):
img_pts = cv2.circle(img_pts, pt, 1, (0,0,255), 1)
txt = str(i)+": "+str(pt)
img_pts = cv2.putText(img_pts, txt, pt, cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0,255,0), 1, cv2.LINE_AA)
distances = np.array([
[ 0, 8, 37.1],
[ 1, 7, 10.0],
[ 2, 4, 6.8],
[ 2, 5, 28.3],
[ 2, 10, 17.7],
[ 2, 12, 19.5],
[ 3, 11, 20.4],
[ 4, 7, 3.8],
[ 5, 9, 9.1],
[ 5, 13, 12.7],
[ 6, 11, 11.9],
[ 9, 10, 7.0],
[ 9, 13, 9.2],
[ 9, 15, 16.3],
[10, 12, 5.3],
[11, 16, 13.6],
[14, 20, 16.1],
[16, 20, 9.7],
[17, 23, 18.4],
[17, 25, 16.0],
[18, 19, 11.6],
[19, 20, 16.0],
[19, 24, 8.6],
[22, 23, 6.0],
[22, 25, 3.8],
[23, 24, 12.2]
])
for i,dd in enumerate(distances):
pt1 = px_ground_pts[int(dd[0]),:]
pt2 = px_ground_pts[int(dd[1]),:]
img_pts = cv2.line(img_pts, pt1, pt2, (255,255,0), 2)
# cv2.imwrite("image_vide_pts_labels.png",img_pts)
# cv2.imshow("pts", img_pts)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
## parametres caméra pour initialiser la minimisation de la "cost" fonction
f = 3.2 # en mm
sensor_size = (6.17, 4.55) # en mm
image_size = (nw,nh) # en px
elevation = 10 # en m
angle = 45 # inclinaison de la caméra. (0° : caméra orientée vers le bas, 90° : caméra orientée parallèlement au sol, 180° : caméra orientée vers le haut)
heading_deg = 45 # la direction dans laquelle la caméra regarde. (0° : la caméra est orientée « nord », 90° : est, 180° : sud, 270° : ouest)
roll_deg = 0 # rotation de l'image. (0°: camera image is not rotated (landscape format), 90°: camera image is in portrait format, 180°: camera is in upside down landscape format)
## Find camera parameters: [focal,sensorx,sensory,elevation,angle]
def fct_cost(param):
#print("cost param : ",param)
f,sx,sy,e,a,b,c = param
camloc = ct.Camera(
ct.RectilinearProjection(
focallength_mm=f,
sensor=(sx,sy),
image=image_size
),
ct.SpatialOrientation(
elevation_m=e,
tilt_deg=a,
heading_deg=b,
roll_deg=c
)
)
pts = []
for pt in px_ground_pts:
gpt = camloc.spaceFromImage(pt)
pts.append(gpt)
pts = np.array(pts)
cost = []
for dd in distances:
cost.append( np.linalg.norm( pts[int(dd[0]),:]-pts[int(dd[1]),:])-dd[2] )
return np.array(cost)
param = [f, sensor_size[0], sensor_size[1], elevation, angle, heading_deg , roll_deg]
#cost = fct_cost(param)
#print("cost =",cost)
res = least_squares(fct_cost, param)
print(res)
# initialize the camera
cam = ct.Camera(ct.RectilinearProjection(focallength_mm=res.x[0],
sensor=(res.x[1],res.x[2]),
image=image_size),
ct.SpatialOrientation(elevation_m=res.x[3],
tilt_deg=res.x[4],
heading_deg = res.x[5],
roll_deg = res.x[6] )
)
space_pts = []
for pt in px_ground_pts:
space_pts.append(cam.spaceFromImage(pt))
space_pts = np.array(space_pts)
space_pts2 = []
for pt in px_ground_pts2:
space_pts2.append(cam.spaceFromImage(pt))
space_pts2 = np.array(space_pts2)
#print("space_pts2 =", space_pts2)
plt.figure()
plt.scatter(space_pts[:,0], space_pts[:,1], color="red", s=2)
# plt.scatter(space_pts2[:,0], space_pts2[:,1], color="blue", s=1)
plt.plot([28.569, 51.681],[26.665, 89.904], color='blue', linestyle='-', linewidth=1)
for dd in distances:
plt.plot( [space_pts[int(dd[0]),0], space_pts[int(dd[1]),0]], [space_pts[int(dd[0]),1], space_pts[int(dd[1]),1]], color="green" )
plt.axis("equal")
plt.show()

Binary file not shown.

After

Width:  |  Height:  |  Size: 309 KiB

View File

@ -15,12 +15,12 @@ from imageio import imread
from matplotlib.offsetbox import TextArea, DrawingArea, OffsetImage, AnnotationBbox
from shapely.geometry import Point
import geopandas as gpd
import cartopy
import cartopy.crs as ccrs
# import cartopy
# import cartopy.crs as ccrs
import cameratransform as ct
import geodatasets
img = cv2.imread("track/Sylvain/stage_Noham/stage_Noham/image_vide_pts.png")
img = cv2.imread("track/Sylvain/stage_Noham/image_vide_pts.png")
nh,nw,_ = img.shape
## img : b g r
@ -72,10 +72,10 @@ for i,dd in enumerate(distances):
pt2 = px_ground_pts[int(dd[1]),:]
img_pts = cv2.line(img_pts, pt1, pt2, (255,255,0), 2)
# cv2.imwrite("image_vide_pts_labels.png",img_pts)
# cv2.imshow("pts", img_pts)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
cv2.imwrite("image_vide_pts_labels.png",img_pts)
cv2.imshow("pts", img_pts)
cv2.waitKey(0)
cv2.destroyAllWindows()
## parametres caméra pour initialiser la minimisation de la "cost" fonction

View File

@ -2,6 +2,9 @@ import cameratransform as ct
import matplotlib.pyplot as plt
im = plt.imread("gmap.png")
# im = plt.imread("track/Sylvain/stage_Noham/gmap.png")
nh,nw,_ = im.shape
# intrinsic camera parameters

View File

@ -5,7 +5,7 @@ from scipy.optimize import least_squares
from imageio import imread
import cameratransform as ct
img = cv2.imread("track/Sylvain/stage_Noham/stage_Noham/image_vide_pts.png")
img = cv2.imread("track/Sylvain/stage_Noham/image_vide_pts.png")
nh,nw,_ = img.shape
res = np.array([ 3.99594676, 3.53413555, 4.55 , 16.41739973, 74.96395791, 49.11271189, 2.79384615])

Binary file not shown.

After

Width:  |  Height:  |  Size: 247 KiB

View File

@ -624,4 +624,330 @@
[76.50209429]
[76.19882787]
[75.9343462]
[76.24888037]
[76.24888037]
[62.91557051 76.04652359]
[62.67332588 76.04652359]
[62.91557051 76.05900225]
[63.15885406 76.05900225]
[62.92539548 76.07148381]
[62.92539548 76.07148381]
[62.67332588 75.75777552]
[62.67332588 75.75777552]
[62.66354917 75.75777552]
[62.68310462 76.05900225]
[62.67332588 76.04652359]
[62.67332588 76.04652359]
[62.67332588 75.7329504 ]
[62.67332588 75.43328211]
[63.14898462 75.44562906]
[62.9057476 75.7329504 48.37827321]
[62.9057476 75.43328211 48.75677702]
[62.9057476 75.44562906 48.74214277]
[62.9057476 75.43328211]
[75.72054217 62.9057476 ]
[75.72054217]
[75.42093802 47.50499667]
[75.74536152 62.68310462 47.69414624]
[75.74536152 62.68310462 47.70129154]
[75.74536152]
[75.42093802]
[75.42093802]
[75.72054217]
[75.12275238]
[75.12275238]
[75.7329504]
[75.74536152]
[75.72054217]
[75.7329504]
[75.42093802]
[75.1104748]
[75.12275238]
[75.43328211]
[75.14731604]
[75.14731604 43.60766083]
[75.13503279]
[75.14731604]
[75.44562906]
[75.45797887]
[75.17189106]
[75.45797887 43.33175078]
[75.45797887]
[75.45797887]
[75.48268708]
[75.47033154]
[75.48268708]
[75.18418284 42.86646145]
[75.19647745 42.55033267]
[75.19647745 42.55033267]
[75.18418284]
[75.49504547 41.79405925]
[75.49504547 41.49120898]
[75.50740674 40.55203592]
[75.19647745 40.7153081 ]
[74.60356515 40.56409817]
[74.61573638 40.57013082]
[74.61573638 40.26914831]
[74.29709498 40.11939354]
[74.32130981 40.13132735]
[74.34553576 39.98201598]
[74.34553576 39.99390938]
[74.34553576 39.53110695]
[74.06442232 39.23686069]
[74.06442232 38.63679057]
[74.08854083 38.35971425]
[74.10060423 37.63509363]
[73.82056691 37.49380799]
[73.80856241 37.7880746 ]
[73.51788596 37.52731242]
[73.54177522 37.52172608]
[73.82056691 37.53848783]
[73.55372393 37.12234876]
[73.25233298 36.98816807]
[36.43370335 72.97606545]
[72.99972851]
[36.30158244 72.72456693]
[73.28800477 35.87543663]
[72.71279139 35.46933216]
[72.71279139 35.46933216]
[72.71279139 35.08794278]
[72.72456693 34.6942629 ]
[72.43890004 34.29386702]
[33.75229145 72.42718409]
[71.58978903 33.51924237]
[71.60133133 33.39065835]
[71.8947241 32.37581553]
[71.8947241]
[71.35530463 32.0207577 ]
[71.36679929 31.65431674]
[71.35530463 31.28161383]
[71.06448756 31.16440055]
[70.82057954]
[70.55495828 31.02874878]
[70.30176451 30.70345109]
[70.02716069 29.73771537]
[70.02716069 30.09204516]
[70.30176451 30.21542588]
[70.06083751]
[69.52614339 29.50769074]
[69.53726532 29.16729282]
[69.54838971]
[69.01818273 28.04134345]
[69.01818273 27.93733001]
[69.01818273 27.50271484]
[69.31038921]
[69.28823826]
[69.01818273]
[68.77127474]
[68.77127474]
[68.51444841]
[67.98244556]
[68.00407143 25.5777922 ]
[68.0148879 25.34274006 96.08831629]
[96.05406974 68.0148879 ]
[96.05406974]
[67.4873024]
[66.99622683]
[66.74691553 23.23516484]
[66.25142614]
[66.2723674 22.15205031 96.07119071]
[66.2723674 21.9555684 96.07119071]
[66.01565616 21.48124074]
[66.02607961]
[66.29331767]
[66.04693322]
[65.80157706]
[65.82234353]
[65.3139239 95.2839289]
[64.82011657 95.2839289 ]
[64.55957067 19.86100391 95.2839289 ]
[64.3102979 95.31779046]
[64.33048357]
[64.33048357]
[63.81497756 95.33472804]
[63.82497367 95.33472804]
[63.83497188 95.31779046 79.81661369]
[63.58881571 95.71907878]
[63.37344066 95.31779046 79.80331961]
[63.13911726 95.31779046 79.80331961]
[62.45158118 95.33472804]
[43.30594948 95.35167016 62.21130324 16.54835221]
[43.15258532 78.62717192]
[42.49970731 61.98169093 78.94216868]
[42.50603168 78.94216868]
[42.34262799 78.61413891]
[78.33964179 41.8994455 ]
[78.04046037 41.31285502]
[78.33964179 41.44803173 15.042921 ]
[78.32667139 40.98873328]
[78.00175401 40.8305686 ]
[77.69131076 40.66690246]
[77.11300215 39.77991767 94.58876713]
[77.12570841 39.77991767]
[77.43343775 39.8035845 ]
[76.8320984 39.21352674 12.93645951]
[76.85739308 38.92134762 12.64151469 94.62228553]
[76.87004487 38.93871785 12.56819968 95.01979326]
[76.55240834 38.3540078 ]
[37.93030184 76.5649942 12.00771565]
[37.7880746 76.5649942]
[37.51614065 76.26140079]
[37.23474656 76.27392413 9.66528021]
[37.3807861 76.28645038 9.33777065]
[36.96613599 75.37159023]
[ 75.39625841 36.40656053 109.47254729]
[36.1428961 75.1104748]
[ 35.73964788 74.82597521 109.99684234]
[ 35.75564885 75.13503279 109.51384527]
[ 35.47462697 74.53059654 109.51384527]
[ 34.94413406 74.54275098 109.01322603 94.27695935]
[ 73.96805871 34.68907664 109.47254729]
[ 34.29386702 73.70064537 109.47254729]
[ 33.90226387 73.74858109 109.47254729]
[ 72.88152065 33.39566588 109.97605688]
[ 73.19293411 33.26745258 109.97605688]
[ 32.89500334 72.34524658 109.97605688 93.94983236]
[ 32.24581075 109.97605688 72.06137351 93.93323568]
[ 31.87743572 71.77880896 109.49319325 93.55809059]
[ 31.38967863 71.79038873 109.99684234 92.76463667]
[ 31.28633781 71.2519685 109.03374584]
[ 31.42286016 70.9959342 110.01763391]
[ 70.70686967 30.81005532 109.51384527]
[ 70.41918716 30.32998652 109.03374584]
[ 70.14411848 29.97359243 109.01322603 93.15206343]
[ 29.62930133 69.88148636 109.01322603 92.39550768]
[ 69.37069393 29.16729282 109.01322603 92.0443914 ]
[ 69.38178154 29.0559336 91.66288651 108.99271222]
[ 69.41505906 109.03374584 28.48184735 90.93768594]
[ 28.38539672 68.87514832 109.51384527 90.92182532]
[ 68.60701146 27.92874912 109.49319325 90.56205929]
[ 68.34007607 108.53612923 89.80116771]
[ 27.16200096 68.09599062 108.53612923]
[ 27.05605356 68.09599062 108.99271222 48.83335881]
[ 26.28135912 109.03374584 67.61076275]
[ 25.97540932 67.64297634 109.53450336]
[ 25.65978509 67.38029636 109.55516752]
[ 67.15070283 25.45609688 109.03374584]
[ 66.89019031 109.05427166 24.93187992 87.73295325]
[ 66.89019031 109.03374584 24.93187992 87.7480535 ]
[ 66.14685471 24.31985661 108.55651804 86.67675682]
[ 66.13640992 108.06187718 86.72132418 23.92735894]
[ 23.52008613 87.07682414 65.89074891 109.03374584]
[ 65.63576486 86.35287941 109.0748035 23.22030085]
[ 65.91154448 86.72132418 108.57691281]
[ 65.91154448 86.72132418 108.53612923]
[ 86.39722091 64.90807232 21.96270402 109.05427166]
[ 21.57632192 64.67767113 86.05991226 108.59731354]
[64.68783178 85.7535161 21.20443666]
[20.92970308 85.76815496 64.18936288]
[63.95176062 85.7535161 20.46842304]
[63.95176062 85.7388809 20.47521928]
[ 85.39022021 19.82772569 62.97168733 108.57691281]
[19.38029737 85.04333904 62.51714266]
[85.41933228 18.85006925 62.28636364]
[ 85.43389376 62.08550007 18.41474552 108.2444208 ]
[62.0951652 18.07095963 85.11574444]
[61.86607206 17.89876924 85.11574444]
[ 17.39644918 61.16531592 84.77023029 40.7153081 108.22411454]
[ 17.06555707 108.20381419 40.55806654 83.77252397 60.71550662]
[ 40.41338315 60.48258116 108.67897603 83.75834431]
[ 83.46201264 108.2444208 16.1643245 39.69665304]
[ 39.50759955 83.46201264 59.84506312 15.75848635 107.79201162]
[ 39.19020826 59.83581794 83.77252397 15.76425986 107.79201162]
[ 15.04573338 82.80331312 107.28199185 59.62494455]
[ 82.83124215 106.83503371 38.77596247]
[ 38.3540078 82.48332109 106.41039268 59.41486042]
[ 37.91901452 82.17866848 107.3421572 59.42402839]
[ 81.84788873 37.78245106 107.79201162 13.44858462]
[ 81.84788873 37.4882271 107.32209628 13.3787074 ]
[ 37.06710434 82.19249044 107.79201162]
[ 81.8753866 36.51176634 107.3421572 ]
[ 36.52264955 81.55978311 107.3421572 ]
[ 81.24566935 35.83265183 105.94862253 11.56649723]
[ 35.57772427 81.24566935 105.98800715]
[ 35.30316319 81.24566935 106.00770794]
[ 80.32556645 104.6374561 35.17966545]
[ 79.99056927 103.73720404 34.91803866]
[ 80.35238572 103.77540774]
[ 79.41809425 34.14248866 103.7945177 ]
[ 79.75017512 103.77540774]
[ 79.75017512 103.77540774]
[ 78.81128617 103.34794257]
[ 78.81128617 102.48126424 32.03040355 7.29699494]
[ 78.50998615 102.50003285 6.86822933]
[102.48126424 78.54902027]
[ 31.38494128 102.48126424 78.54902027 6.15937864]
[ 31.25328496 102.48126424 78.22301868 6.10009431]
[ 77.93730433 30.77278562 102.941709 ]
[ 77.65283493 102.96059929 30.09204516]
[ 77.06220688 102.53758589]
[ 76.78154455 102.13555684 3.94308789 29.18953937]
[ 76.48952313 3.40315394 101.69847069]
[ 76.48952313 3.29745839 101.69847069]
[ 75.87212681 100.8867951 2.66829183]
[ 75.8845649 48.32378955 101.3192494 2.20247051]
[ 75.59661805 48.88800411 100.8867951 1.79845933 27.9115948 ]
[ 75.29765417 101.35618803 48.5378246 1.50216056]
[ 75.32228812 100.90514914 26.74817622]
[ 75.6337651 100.8867951 26.54285738]
[ 75.6337651 0.6916904 100.51153898]
[ 75.65854417 0.41033102 100.49328655]
[ 75.37159023 0.23184104 100.94187253 25.4401693 ]
[ 0.10058544 75.09820007 100.08364354 25.33480309 46.64398888]
[-8.17530266e-02 7.45305965e+01 9.96581655e+01 4.62953538e+01]
[-0.12604582 74.53059654 99.65816554 46.11163769]
[-0.39892698 74.24869866 99.28888242]
[-0.62132165 45.78045957 99.27094487 73.98009451]
[98.86785399 45.79412852 -0.70237889 73.37477901]
[98.88568831 22.78397061 45.44472761]
[98.48464418 72.01484617]
[98.48464418 71.74408524]
[71.4975439 98.50238096 43.92944164]
[98.52012259 70.68415812 43.27903478]
[70.68415812 43.12583956 98.53786908]
[42.96034807 70.43048758 98.55562043]
[42.97952703 98.1563025 69.35960876 20.35249148]
[42.82091258 98.13865287 69.34852603 20.16888004]
[97.74155501 42.34824757 68.84219836]
[97.75910374 41.88652169 68.88613647 18.85328678]
[41.7315488 97.34655868 68.61794554]
[97.36400734 68.36183925 41.27583469 17.81920253]
[40.98260304 96.97099665 68.09599062]
[40.98869495 96.95364725 68.36183925]
[67.36960852 40.10187108 96.15686473]
[67.65371887 39.81592484 96.58005518]
[39.36103174 67.16134788 96.59731078]
[38.92803685 66.64137056 96.61457104]
[38.6320753 66.37261 96.20832454]
[ 38.47624155 66.62028886 96.63183596 109.7685385 ]
[ 37.90907921 65.85957225 96.2426542 109.78926287]
[ 37.63096125 65.88035446 95.47039218 109.87222135]
[ 37.34344163 65.39219218 95.47039218 109.41064576]
[ 36.79586913 64.66751263 95.9238381 109.41064576 13.05359944]
[ 64.68783178 36.6736737 12.60812345 95.12105062 109.45190739]
[ 64.68783178 36.39770361 12.46440063 95.13794264 109.43127355]
[ 35.85625726 63.96178114 94.34370992 109.41064576]
[ 63.73508437 35.45583773 93.57459481 109.41064576]
[ 35.05382232 63.73508437 93.21770479 109.41064576]
[ 34.92585702 63.07010345 93.5911034 109.43127355]
[ 62.60493169 34.66068415 93.6241337 108.99271222 9.41356686]
[ 62.83704457 34.67104362 93.21770479 108.55651804 9.21564301]
[ 62.15319809 34.02008269 92.86255285 108.51574636]
[ 33.50733702 92.86255285 61.9334815 108.97220441 7.95595284]
[ 33.12305449 92.89522596 61.70500954 7.85336505 108.95170261]
[ 32.61604793 61.47745583 93.29985404 108.55651804]
[ 32.23976058 61.00615203 6.74484961 92.9279163 109.51384527]
[ 32.11507819 61.01561558 6.62601485 92.9279163 109.49319325]
[ 31.62480424 60.55755175 91.03293625 6.44766302 108.57691281]
[ 31.14022606 91.42709924 108.53612923 5.86611471]
[ 30.78163454 90.68836536 109.01322603 59.65256954]
[ 30.55045517 90.32972292 109.51384527]
[ 30.0736644 89.61783722 109.49319325 59.22382237]
[ 29.95987824 89.98851955 109.51384527 59.22382237]
[29.62489466 88.51743152 3.46225025]
[29.27922201 87.82361231]
[28.94088499 87.8387356 2.52489745]
[87.50936259 28.48684788]
[28.15936898 86.79567806]
[28.04219064 86.79567806]
[27.49110851 86.48600437]
[26.93091216 86.14822432]

Binary file not shown.

After

Width:  |  Height:  |  Size: 266 KiB

BIN
track/extract_capture.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 MiB

BIN
traitementV2/780.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

BIN
traitementV2/accel±20.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

BIN
traitementV2/accel±50.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

28
traitementV2/accpt4.py Normal file
View File

@ -0,0 +1,28 @@
import csv
import matplotlib.pyplot as plt
plusoumoins = 20
def opencsv(file):
with open(file, newline='') as csvfile:
return [row for row in csv.DictReader(csvfile, delimiter=';')]
data = opencsv('traitementV2/vit13.txt')
for i in range (len(data)-plusoumoins):
accel = (float(data[i+plusoumoins]['vitesse']) - float(data[i-plusoumoins]['vitesse'])) / (float(data[i+plusoumoins]['temps']) - float(data[i-plusoumoins]['temps']))*100
print(f'accel {i}:', accel)
plt.figure(plusoumoins,figsize=[16,9])
plt.xlim([-1,476])
plt.ylim([-1, 1])
plt.plot([i],[accel], marker='o', linestyle='-')
# plt.show
# plt.pause(0.00001)
if i == 457-plusoumoins-2:
plt.savefig(f'traitementV2/accel±{plusoumoins}.png')
plt.clf
# with open("traitementV2/vit13.txt", 'a', encoding='utf-8') as file:
# file.write('\n' + str(i) + ';' + str(vitesse))

File diff suppressed because it is too large Load Diff

476
traitementV2/pt13.txt Normal file
View File

@ -0,0 +1,476 @@
temps;distance
1;113.90268274039994
2;113.90268274039994
3;113.90268274039994
4;113.90268274039994
5;113.39596107770217
7;113.90268274039994
8;113.90268274039994
9;113.92456837476712
13;113.41770305090014
14;113.90268274039994
15;113.90268274039994
16;113.90268274039994
20;113.90268274039994
21;113.90268274039994
22;113.90268274039994
23;113.90268274039994
25;113.92456837476712
26;112.89235272140164
27;113.88080370759658
28;113.90268274039994
29;113.90268274039994
30;113.90268274039994
31;113.90268274039994
32;113.90268274039994
33;113.88080370759658
34;113.39596107770217
35;113.39596107770217
36;113.39596107770217
37;113.88080370759658
38;113.90268274039994
39;113.88080370759658
40;113.88080370759658
41;113.90268274039994
42;113.90268274039994
43;113.90268274039994
44;113.88080370759658
45;113.90268274039994
46;113.90268274039994
47;113.90268274039994
48;113.90268274039994
49;113.35249674242968
50;113.37422564252824
51;113.37422564252824
52;113.39596107770217
53;113.39596107770217
54;113.39596107770217
55;113.37422564252824
56;113.37422564252824
57;113.37422564252824
58;113.37422564252824
59;113.37422564252824
60;113.37422564252824
61;113.37422564252824
62;113.37422564252824
63;113.35249674242968
64;113.35249674242968
65;113.35249674242968
66;113.35249674242968
67;113.35249674242968
68;113.35249674242968
69;113.35249674242968
70;113.39596107770217
71;113.39596107770217
72;113.39596107770217
73;113.39596107770217
74;113.39596107770217
75;113.39596107770217
76;113.37422564252824
77;113.37422564252824
78;113.37422564252824
79;113.37422564252824
80;113.39596107770217
81;113.39596107770217
82;113.39596107770217
83;113.88080370759658
84;113.88080370759658
85;113.37422564252824
86;113.37422564252824
87;113.39596107770217
88;113.39596107770217
89;113.39596107770217
90;113.39596107770217
91;113.37422564252824
92;113.37422564252824
93;113.39596107770217
94;113.39596107770217
95;113.39596107770217
96;113.39596107770217
97;113.41770305090014
98;113.41770305090014
99;113.41770305090014
100;113.41770305090014
101;113.39596107770217
102;113.39596107770217
103;113.39596107770217
104;113.39596107770217
105;113.39596107770217
106;113.39596107770217
107;113.39596107770217
108;113.39596107770217
109;113.39596107770217
110;113.39596107770217
111;113.39596107770217
112;113.39596107770217
113;113.39596107770217
114;113.39596107770217
115;113.39596107770217
116;113.39596107770217
117;113.39596107770217
118;113.39596107770217
119;113.41770305090014
120;113.41770305090014
121;113.41770305090014
122;113.39596107770217
123;113.39596107770217
124;113.39596107770217
125;113.39596107770217
126;113.39596107770217
127;113.39596107770217
128;113.39596107770217
129;113.39596107770217
130;113.39596107770217
131;113.39596107770217
132;113.39596107770217
133;113.39596107770217
134;113.39596107770217
135;113.39596107770217
136;113.39596107770217
137;113.39596107770217
138;113.39596107770217
139;113.39596107770217
140;113.39596107770217
141;113.39596107770217
142;113.39596107770217
143;113.39596107770217
144;113.39596107770217
145;113.39596107770217
146;113.39596107770217
147;113.39596107770217
148;113.39596107770217
149;113.39596107770217
150;113.39596107770217
151;112.89235272140164
160;113.39596107770217
161;113.41770305090014
162;113.41770305090014
163;112.41328775001939
167;113.39596107770217
168;113.39596107770217
169;113.41770305090014
170;113.39596107770217
171;112.39182906706137
172;112.91395238302232
173;112.91395238302232
174;112.91395238302232
175;112.39182906706137
176;112.39182906706137
177;112.39182906706137
178;112.91395238302232
179;112.91395238302232
180;112.91395238302232
181;111.39992318792598
182;112.39182906706137
183;112.39182906706137
184;112.39182906706137
185;111.39992318792598
186;111.91568088037849
187;111.42110384686693
188;111.42110384686693
189;111.42110384686693
193;111.46348405104577
194;110.95057887757523
195;111.91568088037849
196;110.92952906130722
197;110.92952906130722
198;110.92952906130722
199;110.5036896534225
200;110.992697225526
201;110.5036896534225
202;110.992697225526
203;110.97163493139053
204;110.97163493139053
205;111.01376576275614
206;111.01376576275614
207;110.992697225526
208;110.5036896534225
209;110.5036896534225
210;110.5036896534225
211;110.03843161747227
212;110.03843161747227
213;110.08004541253567
214;110.08004541253567
215;109.5965140418991
216;109.5965140418991
217;109.55516751547407
218;109.57583774201251
219;109.5965140418991
220;109.65857940842659
221;109.19812088147722
222;109.19812088147722
223;109.19812088147722
224;109.1364350921017
225;109.17755292564226
226;109.19812088147722
227;109.21869486688848
228;109.21869486688848
229;108.71984307241543
230;108.76073400808588
237;106.87489612284426
238;106.87489612284426
239;106.87489612284426
240;106.41039267972812
241;105.96831201126908
242;105.50912760451035
243;105.50912760451035
244;105.96831201126908
245;106.0077079431609
248;105.11099387982487
249;105.09153361999773
250;105.130459699107
251;104.65679491176226
252;104.65679491176226
253;104.65679491176226
254;100.85010232969762
255;100.01110726634198
256;101.60572413348754
257;102.92282403407741
258;102.4812642429444
259;103.36693956268459
260;102.92282403407741
261;102.53758588878247
262;102.51880673307357
263;102.4812642429444
264;102.51880673307357
265;102.13555683704129
266;101.69847069433332
267;101.30078780550541
268;101.30078780550541
269;100.90514914230053
270;100.90514914230053
271;100.52979647604367
272;100.52979647604367
273;100.13809841094593
274;99.71229048770766
275;99.69424386146943
276;99.71229048770766
277;99.32477234574041
278;99.30682491666337
279;99.32477234574041
280;98.903527522254
281;98.93922063549164
282;98.93922063549164
283;98.13865287129774
284;98.15630249687169
285;97.74155501028397
286;97.74155501028397
287;97.36400734215728
288;97.36400734215728
289;96.95364724716276
290;97.02307304361022
291;96.61457103936468
292;96.20832454213539
293;95.40252375755514
294;95.40252375755514
295;95.40252375755514
296;95.01979326410523
297;95.05352766823162
298;94.68937596487135
299;94.70615975739216
300;94.70615975739216
301;93.54159072866744
302;93.5580905852994
303;93.94983235653768
304;93.18487545005125
305;92.82989693224735
306;92.82989693224735
307;92.09280368942092
308;92.47664252225249
309;92.10894957427504
310;91.36319918754546
311;91.01705088202571
312;91.01705088202571
313;90.65676427309727
314;90.2982942835695
315;90.2982942835695
316;89.57121161174231
317;89.6178372185309
318;89.6178372185309
319;88.89768253370882
320;88.54800985056673
321;88.20007421905581
322;87.86899370560427
323;87.8841285312825
324;87.8841285312825
325;86.84033543005802
326;86.50081464926805
327;86.16295593116655
328;85.84140431097202
329;85.50675579287447
330;85.50675579287447
331;84.81347716714163
332;84.48382426395254
333;84.49817128824773
334;84.18430872792776
335;83.85767542141714
336;83.85767542141714
337;83.20910291483531
338;82.88714128187712
339;82.91511141284022
340;82.27549299785763
341;81.9579605547623
342;81.9579605547623
343;81.66934101790514
344;81.01434153094871
345;80.72974895516191
346;80.41949037228693
347;80.43292099504976
348;80.43292099504976
349;79.82991095774648
350;79.21919883482502
351;78.91596726339523
352;78.62717191558076
353;77.7041420832723
354;77.7041420832723
355;77.43343775096056
356;77.45899293892187
357;77.17656331630288
358;76.27392412526761
359;75.9717125699865
360;75.9717125699865
361;75.11047480482982
362;74.54275098493423
363;73.98009450925957
364;73.70064537128788
365;73.4343593302413
366;73.4343593302413
367;72.59518263387557
368;72.33355180161911
369;72.07301189683938
370;71.8251437086447
371;71.27491407716619
372;71.27491407716619
373;70.75232317666304
374;70.22288021473204
375;69.97108241769348
376;69.45946336908032
377;68.93011319568129
378;68.93011319568129
379;68.44898721495323
380;68.1935620486459
381;67.69671236779283
382;66.92197720635845
383;66.68356123085218
384;66.68356123085218
385;65.45402008888533
386;65.4746469897533
387;64.9897737329689
388;64.75901670868834
389;64.28003539912956
390;64.28003539912956
391;63.57886486439869
392;63.08981136742726
393;62.61469618136209
394;62.14352092428581
395;61.69541664528446
396;61.69541664528446
397;60.80967459978345
398;60.353269060348424
404;58.71776217410935
405;58.27810268338762
411;55.60993381102287
412;54.97570713814874
413;54.790992130147174
419;51.55684626906423
420;51.55684626906423
421;51.3913839198885
422;50.25013272729472
423;49.69272746056912
424;49.134036175702555
425;48.782087554614954
426;48.782087554614954
427;47.36298036438692
428;47.196356754601084
429;47.05139665977286
430;46.71376662330383
431;46.56320937842218
432;46.56320937842218
433;45.553360976061164
434;44.38017488164266
435;44.229956240927734
436;43.4145305863945
437;43.114058139586575
438;43.114058139586575
439;42.336328735667244
440;41.73814343682093
441;41.44186773761665
442;40.830568595068556
443;40.21529505625481
444;40.21529505625481
445;39.33692037629811
446;38.915559448628414
447;38.18202002491956
448;37.748729027097845
449;37.471489858101094
450;37.471489858101094
451;36.247504911665715
452;35.85938592623987
453;35.17966544518724
454;34.780015280663335
455;34.26309488022975
456;34.26309488022975
457;33.2425100966097
458;32.74368687022438
459;32.24581074670364
460;31.887042472342284
461;31.39441669401581
462;31.39441669401581
463;30.316194285885622
464;29.850946822232522
465;29.274494408242788
466;28.697333159047467
467;28.250165920304813
468;28.250165920304813
469;27.251408203901413
470;26.597932435862734
471;26.297699181516183
472;25.545824766856242
473;25.13281960865403
474;25.13281960865403
475;24.111641822422584
476;23.609264848780704
477;23.117200910517123
478;22.42883604905868
479;22.05188798357431
480;22.05188798357431
481;20.82597250996624
482;20.369417753970062
483;19.730496938398282
484;19.476564601405407
485;18.765139163582727
486;18.765139163582727
487;17.560008619996612
488;17.227566473541046
489;16.56023092586279
490;16.07984554675826
491;15.451571757668749
492;15.451571757668749
493;14.428049541844786
494;13.895162375033236
495;13.287890523788946
496;12.694385074765744
497;12.266471100672735
498;12.266471100672735
499;11.131444595325704
500;10.5883968705696
501;10.117611442933999
502;9.447509550801716
503;8.858962479183305
504;8.72702384689526
505;7.65693780154592
506;7.167674415211756
507;6.565774839540286
508;6.092237485921093
509;5.448283588464423
510;5.448283588464423
511;4.4973548205346265
512;3.890041070237749
513;3.2991872459670786
514;2.6632590080822656
515;2.2024705101967648
516;2.2024705101967648
517;1.0528975944720018
518;0.7236154475711274
519;0.4449815457591514
520;0.27076179223171837

Binary file not shown.

After

Width:  |  Height:  |  Size: 162 KiB

72
traitementV2/visupt4.py Normal file
View File

@ -0,0 +1,72 @@
import matplotlib.pyplot as plt
from colour import Color
def rainbow_gradient(num_colors):
colors = []
gradient = list(Color("violet").range_to(Color("red"), num_colors))
for color in gradient:
colors.append(color.hex_l)
return colors
framenb = 1
keyvalues = []
with open('traitementV2/distance.txt', 'r') as f:
lignes = f.readlines()
for ligne in lignes:
line = eval(ligne)
allkeys = list(line.keys())
allkeys.sort()
linedict = {i: line[i] for i in allkeys}
linedict = {cle: valeur for cle, valeur in linedict.items() if valeur >= 0}
for key, value in linedict.items():
if key not in keyvalues:
keyvalues.append(key)
keypositions = {}
for key, i in zip(keyvalues, range(1, len(keyvalues)+1)):
keypositions[key] = i
print('keypositions: ', keypositions)
colors = rainbow_gradient(len(keypositions)+1)
with open('traitementV2/distance.txt', 'r') as f:
lignes = f.readlines()
for ligne in lignes:
line = eval(ligne)
allkeys = list(line.keys())
allkeys.sort()
linedict = {i: line[i] for i in allkeys}
linedict = {cle: valeur for cle, valeur in linedict.items() if valeur >= 0}
plt.figure(1,figsize=[16,9])
plt.xlim([-1,780])
plt.ylim([-20, 150])
plt.grid()
nb = 0
for key, value in linedict.items():
if key == 13:
# print('value: ', value)
# print(framenb)
with open("traitementV2/pt13.txt", 'a', encoding='utf-8') as file:
file.write('\n' + str(framenb) + ';' + str(value))
plt.plot([framenb],[value], marker='o', linestyle='-', color=colors[keypositions[key]]) # , color=colors[key]
nb += 1
# plt.draw()
# plt.pause(0.0001)
if framenb == 780:
plt.savefig(f'traitementV2/{framenb}.png')
framenb += 1
# plt.clf()

457
traitementV2/vit13.txt Normal file
View File

@ -0,0 +1,457 @@
temps;vitesse
0;0.2203695636911355
1;0.22161122417978193
2;0.2218895757246934
3;0.22414714122121102
4;0.2251793424582029
5;0.22640301448957026
6;0.22637916369574068
7;0.22773771622202058
8;0.22773771622202058
9;0.23076676980392818
10;0.2320941807387388
11;0.23329454949710868
12;0.23463617025213993
13;0.23565445618186323
14;0.23565445618186323
15;0.23807971549773826
16;0.23872824527431533
17;0.23936223880725904
18;0.23972979102989075
19;-0.0
20;-0.0
21;0.011960565173266524
22;0.01148819777981944
23;0.0004725094603026778
24;0.011260481393283802
25;0.011260481393283802
26;0.011746828823665586
27;0.0010351763898071233
28;0.012582311854087959
29;0.012582311854087959
30;0.012582311854087959
31;0.01355018199671011
32;0.01355018199671011
33;0.01355018199671011
34;0.01355018199671011
35;0.015054516640458959
36;-0.012109053184948499
37;0.013902814872813295
38;0.014478578893954213
39;0.014478578893954213
40;0.014478578893954213
41;0.014478578893954213
42;0.013334780597309765
43;0.012759016576168847
44;-0.0
45;-0.0
46;-0.0
47;0.012759016576168847
48;0.013906765733465639
49;0.01333100171232472
50;0.01333100171232472
51;0.013906765733465639
52;0.013334780597309765
53;0.013334780597309765
54;0.012759016576168847
55;0.0005757640211409185
56;0.0005757640211409185
57;0.013906765733465639
58;0.013906765733465639
59;-0.0011437982966444487
60;-0.0005719851361558731
61;-0.0005719851361558731
62;-0.0
63;0.0005719851361558731
64;0.0005719851361558731
65;-0.0005719851361558731
66;-0.0005719851361558731
67;-0.0005719851361558731
68;-0.0005719851361558731
69;-0.0011441423255762941
70;-0.0011441423255762941
71;-0.0011441423255762941
72;-0.0011441423255762941
73;-0.0011437982966444487
74;-0.0011437982966444487
75;-0.0011437982966444487
76;-0.0011437982966444487
77;-0.0011437982966444487
78;-0.0011437982966444487
79;-0.0011437982966444487
80;-0.0
81;-0.0
82;-0.0
83;-0.0
84;-0.0
85;-0.0
86;-0.0005719851361558731
87;-0.0005719851361558731
88;-0.0005719851361558731
89;-0.0005719851361558731
90;-0.0
91;-0.0005721571894204209
92;-0.0005721571894204209
93;0.012186859386748426
94;0.012759016576168847
95;-0.0005719851361558731
96;-0.0005719851361558731
97;-0.0
98;-0.0
99;-0.0
100;-0.0
101;-0.0005719851361558731
102;-0.0005719851361558731
103;-0.0
104;-0.0
105;-0.0
106;-0.0
107;0.0005721571894204209
108;0.0005721571894204209
109;0.0005721571894204209
110;0.0005721571894204209
111;-0.0
112;-0.0
113;-0.0
114;-0.0
115;-0.0
116;-0.0
117;-0.0
118;-0.0
119;-0.0
120;-0.0
121;-0.0
122;-0.0
123;0.013252851481592947
124;-0.0
125;-0.0004726515912603477
126;-0.0004726515912603477
127;0.021362463645277722
128;-0.0
129;0.00044371373873420395
130;-0.0
131;0.00044371373873420395
132;0.020492490013077597
133;0.009836912136323435
134;0.009836912136323435
135;0.009836912136323435
136;0.020492490013077597
137;0.020492490013077597
138;0.020492490013077597
139;0.009836912136323435
140;0.009836912136323435
141;0.009836912136323435
142;0.04073546713828959
143;0.020492490013077597
144;0.020492490013077597
145;0.020492490013077597
146;0.04073546713828959
147;0.030209799945381217
148;0.04030320879255594
149;0.04030320879255594
150;0.04030320879255594
151;0.03716301974339231
152;0.04702658077167198
153;0.028466926871609226
154;0.04743138493067205
155;0.04743138493067205
156;0.04743138493067205
157;0.05562060431307058
158;0.04621661254184936
159;0.05562060431307058
160;0.04621661254184936
161;0.03693688057713674
162;0.055098321507082784
163;0.054634938366909254
164;0.054634938366909254
165;0.03228614828394072
166;0.07054320547023586
167;0.07054320547023586
168;0.07107349749945478
169;0.08189096244463166
170;0.057399937794856
171;0.06911968220699151
172;0.06911968220699151
173;0.08091313027129808
174;0.06817841524786018
175;0.06918686711188532
176;0.06868271524509405
177;0.08091313027129808
178;0.0793993408437983
179;0.09063003662305114
180;0.05370249527923793
181;0.07789532159961324
182;0.07939985304779656
183;0.07839697905900257
184;0.05370249527923793
185;0.06578014667048791
186;0.05371729219459618
187;0.06588440913296337
188;0.06488706923856222
189;0.10428608927730694
190;0.09262915351661279
191;0.11456328994395969
192;0.10270764503588868
193;0.11275493295541236
194;0.1231909421999288
195;0.11351277383891235
196;0.11419057305129372
197;0.10218140250594553
198;0.12786311621089405
199;0.12782828937810417
200;0.126982070267033
201;0.13819501849986685
202;0.13819501849986685
203;0.13773700682095086
204;0.20986059399401907
205;0.22809961711044605
206;0.19343403304206427
207;0.15468712137814916
208;0.1642862472723449
209;0.14593708369241468
210;0.1555917690969187
211;0.15345495985036142
212;0.15386320236577225
213;0.1537805059245579
214;0.15341371758562902
215;0.1621947218447349
216;0.17304584161072317
217;0.17168115382547425
218;0.17168115382547425
219;0.1802819943299281
220;0.17894099890872123
221;0.18799470542605629
222;0.18844183490072938
223;0.1974042707813599
224;0.20666096476480048
225;0.19620867849882603
226;0.1967052939212655
227;0.18875309442759622
228;0.18920178015452221
229;0.18875309442759622
230;0.1876716289368531
231;0.17572728439443602
232;0.16424767422546793
233;0.18426186833031544
234;0.19530023785993472
235;0.206653823321923
236;0.1939326018300237
237;0.20335595468001194
238;0.20438032518288757
239;0.2027144122263026
240;0.20088741758294834
241;0.21163747032625224
242;0.1221520470411114
243;0.12127851338912726
244;0.16324211515611572
245;0.19790263885584905
246;0.19635449944313615
247;0.21877399722244656
248;0.21666968603173847
249;0.20609016135237673
250;0.20559597304424782
251;0.2352545661651832
252;0.23580831967826785
253;0.21541380211851602
254;0.2240419801126861
255;0.222918180875212
256;0.222918180875212
257;0.2319038277073582
258;0.22180280579073788
259;0.22160123425706912
260;0.2412262444341634
261;0.24002756655053198
262;0.22882209488636707
263;0.2378284102203201
264;0.24773674221416206
265;0.23753889637291867
266;0.2562003501295016
267;0.25544566124235574
268;0.2443602711506079
269;0.2642510026784953
270;0.27345291539276073
271;0.26154154348005076
272;0.27071865240177423
273;0.259405959973723
274;0.259405959973723
275;0.2769387345289279
276;0.2858734919181376
277;0.28396556094726877
278;0.29425444033258424
279;0.2923109275392159
280;0.2816202302437083
281;0.2786591208003557
282;0.2873341972000685
283;0.28695664392914244
284;0.28514432989940725
285;0.29462769070564426
286;0.28504475114353167
287;0.3025541274357064
288;0.3110268019872378
289;0.2796441925217691
290;0.296910462827415
291;0.3155755737309313
292;0.2954451288233936
293;0.29369883985111084
294;0.31093566845522735
295;0.2990277561647108
296;0.3172934776306726
297;0.30726390997961284
298;0.28763889980251856
299;0.29439841905997993
300;0.31046979071580766
301;0.30896834236057985
302;0.3071347991575985
303;0.33142505790255794
304;0.31229130338078975
305;0.3206420912518508
306;0.3199695863055007
307;0.308450505721209
308;0.3230022559289241
309;0.3217989907649819
310;0.31308634567415194
311;0.3361487822750705
312;0.35108888279863865
313;0.3384273926525907
314;0.3368465599468467
315;0.33496306844540114
316;0.32650118370343995
317;0.339778241026287
318;0.3466632629277727
319;0.3352754018500593
320;0.33312317250810103
321;0.34798045292319857
322;0.3397209118621466
323;0.3448776906514237
324;0.35881040017592364
325;0.34836896045110083
326;0.35335994507359986
327;0.3680262688726035
328;0.35119420532043
329;0.3554992984160279
330;0.3622210133188524
331;0.36770075395032403
332;0.37085169275237534
333;0.36963651906078243
334;0.36147181951144086
335;0.3941816027938007
336;0.3936387896130647
337;0.390529926967831
338;0.3805311085825444
339;0.3851561016912019
340;0.37755622411713685
341;0.3717178215493056
342;0.3845876504169748
343;0.38996688341048613
344;0.4030387372272647
345;0.4073985966057478
346;0.3836449336837672
347;0.3990009992158696
348;0.411011671306265
349;0.38122587513303413
350;0.37824763491968855
351;0.38271168121326465
352;0.3901028798570653
353;0.38840348333529445
354;0.41278326530522785
355;0.39694974273228933
356;0.395135243051521
357;0.4117524371612199
358;0.41759275939765256
359;0.4177524132351629
360;0.42439295325568366
361;0.41453274758581293
362;0.4313188651008514
363;0.4297118049640075
364;0.42279371149636724
365;0.4191763504222161
366;0.4220170531558322
367;0.4129392044628501
368;0.42717360514310826
369;0.43993466955000315
370;0.4281513389703908
371;0.4390383140463713
372;0.4447076054955774
373;0.4215087160245048
374;0.4365720425299255
375;0.43871000558769757
376;0.4399462070013526
377;0.44244276988794345
378;0.45405170458254246
379;0.4408220718517713
380;0.4481677545496066
381;0.447153523259126
382;0.4521037905540802
383;0.4518242946827663
384;0.45705522239968616
385;0.44034310833362933
386;0.45482573865439074
387;0.4762161718306143
388;0.48121744246250797
389;0.4844167100083613
390;0.48168865716090675
391;0.4773929593004052
392;0.4819562150645929
393;0.4950831420747329
394;0.5038308729785489
395;0.48323921723559043
396;0.48153449385666597
397;0.4668320916233354
398;0.48594455970340344
399;0.49818791401006396
400;0.47601278831958244
401;0.4868164104093057
402;0.4947692299860013
403;0.48588422902629
404;0.508205294066336
405;0.525402024804196
406;0.50672794196171
407;0.4956407924943794
408;0.5025562271650974
409;0.48109765730895965
410;0.5000635872937892
411;0.5132840339685756
412;0.5057665217144769
413;0.5081396680990065
414;0.5102626251063773
415;0.494175805565638
416;0.5102453301654887
417;0.5222599290074934
418;0.5159585115236797
419;0.5115524959795529
420;0.5109705489825482
421;0.4995681543030294
422;0.5239863483711705
423;0.532734825909475
424;0.5180861575211296
425;0.5205142205126738
426;0.519160360197855
427;0.5086432506051207
428;0.5219748773259202
429;0.5359982238209609
430;0.5251215677058093
431;0.5276132051436483
432;0.5257720959481818
433;0.5163308255702512
434;0.533236107860266
435;0.5475268374591108
436;0.5315416537618848
437;0.5369325597744949
438;0.5372508402384074
439;0.5255344555829528
440;0.541927055756813
441;0.5548024080287647
442;0.5443587727463455
443;0.5396235513142538
444;0.5486688313960989
445;0.5288826625892584
446;0.5430385470557738
447;0.55902048785306
448;0.5476961730646185
449;0.55121068001838
450;0.5503876421136936
451;0.5322727773384714
452;0.5526050102395345
453;0.5612703298948206
454;0.5363418674791338
455;0.5289119989931144

BIN
traitementV2/vitesse±1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

28
traitementV2/vtpt4.py Normal file
View File

@ -0,0 +1,28 @@
import csv
import matplotlib.pyplot as plt
plusoumoins = 19
def opencsv(file):
with open(file, newline='') as csvfile:
return [row for row in csv.DictReader(csvfile, delimiter=';')]
data = opencsv('traitementV2/pt13.txt')
for i in range (len(data)-plusoumoins):
vitesse = -(float(data[i+plusoumoins]['distance']) - float(data[i-plusoumoins]['distance'])) / (float(data[i+plusoumoins]['temps']) - float(data[i-plusoumoins]['temps']))
# print(f'vitesse {i}:', -vitesse)
plt.figure(plusoumoins,figsize=[16,9])
plt.xlim([-1,476])
plt.ylim([-1, 1])
plt.plot([i],[vitesse], marker='o', linestyle='-')
# plt.show
# plt.pause(0.00001)
# if i == 474-plusoumoins:
# plt.savefig(f'traitementV2/vitesse±{plusoumoins}.png')
# plt.clf
with open("traitementV2/vit13.txt", 'a', encoding='utf-8') as file:
file.write('\n' + str(i) + ';' + str(vitesse))

35
traitementV2/vtpt4mod.py Normal file
View File

@ -0,0 +1,35 @@
import csv
import matplotlib.pyplot as plt
# plusoumoins = 6
def opencsv(file):
with open(file, newline='') as csvfile:
return [row for row in csv.DictReader(csvfile, delimiter=';')]
data = opencsv('traitementV2/pt13.txt')
def tester(plusoumoins):
for i in range (len(data)-plusoumoins):
# print(data[i+1]['temps'])
# print(data[i-1]['temps'])
# print(data[i+1]['distance'])
# print(data[i-1]['distance'])
vitesse = (float(data[i+plusoumoins]['distance']) - float(data[i-plusoumoins]['distance'])) / (float(data[i+plusoumoins]['temps']) - float(data[i-plusoumoins]['temps']))
print(f'vitesse {i}:', -vitesse)
plt.figure(plusoumoins,figsize=[16,9])
plt.xlim([-1,476])
plt.ylim([-1, 1])
plt.plot([i],[-vitesse], marker='o', linestyle='-')
# plt.show
# plt.pause(0.00001)
if i == 474-plusoumoins:
plt.savefig(f'traitementV2/vitesse±{plusoumoins}.png')
plt.clf
# for i in range(1, 20):
# tester(i)
tester(100)