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A SAFETY INDEX FOR TRAFFIC 

WITH LINEAR SPACING 

Eiji Kometani* 

Department of Civil Engineering, Kyoto University, Kyoto, Japan 

and 
Tsuna Sasakit 

Department of Civil Engineering, Kumamoto University, Kumamoto, Japan 

(Received March 5, 1959) 

The authors have tried to improve the traffic dynamic theory of Professor 
Pipes and have found the fundamental equation of traffic dynamics for a 
case in which the velocity of the following vehicle is determined not only 
by the space between following and lead cars but also by the velocity of the 
lead car. The safety of the following car with respect to rear end collision 
when the lead car is in sinusoidal motion is quantified by introducing a 
safety index. At the same time, the authors describe the stability of the 
indicial response of the following car, and the stability of the propagation 
of a sinusoidal disturbance down a line of cars. 

OUR STUDY starts by discussing the traffic dynamic theory of Pro- 
fessor PIPESR1] and then goes on to propose a new fundamental 

equation which is deduced by introducing reaction time lag into his funda- 
mental equation.[21 In our fundamental equation, we consider that the 
velocity of a following vehicle depends not only on the car space between 
the following and the lead car but also on the velocity of the lead car. The 
fundamental equation for a special case in which the velocity of the follow- 
ing vehicle depends only on the car space between the lead car coincides 
with the fundamental equation proposed independently of our study by 
R. E. CHANDLER, R. HERMAN, AND E. W. MONTROLL.Y31 

A parameter a or m relating to the velocity of the lead car that appears 
in our consideration is important particularly when we investigate the 
traffic flow containing several kinds of cars whose braking abilities are 
widely different, as is observed on the highways or on the streets in Japan. 

In this paper, the authors first show the fundamental equation of traffic 
dynamics, next discuss the stability of indicial response and that of the 
propagation of sinusoidal disturbance, and lastly describe the safety index. 
The safety index is a measure to represent the safety when the traffic 
flow is in sinusoidal motion. 

* This study was performed, in part, at the Operations Research Group, Case 
Institute of Technology, Cleveland, Ohio, while the first author was studying there. 

t Now at Kyoto University, Kyoto, Japan. 
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Safety Index for Traffic with Linear Spacing 705 

It will rarely be observed that the actual traffic flow behaves in a sinu- 
soidal motion for a long period of time, but the behavior of very congested 
traffic disturbed by several sources such as the existence of bicycles, pedes- 
trians, and parked cars may be considered approximately as a sinusoidal 
motion. These traffic disturbances that prevent driving at a uniform 
velocity can easily be observed in many city streets in Japan. In such 
traffic condition, safety is greatly reduced as compared to traffic flowing 
with uniform velocity. This is considered one reason for the high rate of 
rear end collisions in Japan despite the fact that the traffic volume is not 
large compared with that of the United States. 

FUNDAMENTAL EQUATIONS OF TRAFFIC DYNAMICS 

WE CONSIDER the manner in which vehicles of a single type follow each 
other in a queue on a highway without passing. When the following 

k+2. k+1 k 1 

B r Vk+2 Vk+,k VI 

b Is , ~ ~~~ ~ ~~~~~~ It bo b b 
TV~+2-mTv*+1+t-L1, Tv,+]-MTik4-bo 

0 Xk+2 Xk4, Xk Xi 

Fig. 1. Model of traffic flow. 

vehicle drives so as to keep the car space behind the lead car to the mini- 
mum safe interval, the behavior of the lead car will control that of the fol- 
lowing car completely. 

We consider right bound traffic flow in Fig. 1. In general, the car 
space depends upon the driver's perception ability, so there is no assurance 
that the space he keeps is the safe car space. Even if the driver of the fol- 
lowing car tries to follow the variations of behavior of the lead car, it is 
inevitable that there be a time lag of at least T, the reaction time. Now, 
let xk(t), xk+l(t) and Vk(t), Vk+1(t) be the coordinates and the velocities of 
the kth and (k+1)th vehicles respectively at a certain time t. Then, we 
have equation (1): 

Vk+l(t) =f[Xk(t-T)-Xk+l(t-T), Vk(t-T)], (1) 

where f denotes a function defined by the experience of drivers. To 
simplify the analysis we deal with a case when the right hand side of 
equation (1) is a linear form. Namely, 

Xk (t- T) -Xk-+1(t- T) = a Vk(t- T) +O Vkil (t)+ +bo (2) 

where a, f, and bo are all constants. Equation (2) tells us that we are 
dealing with a case when the car space is expressed by a linear function 
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706 Kometani and Sasaki 

of the velocities of the lead car and the following car. For convenience in 
the analysis we put 

a=-mT, f=nT. (m>O, nO) (3) 

As a is always negative, we give it a minus sign. Differentiating equation 
(2), we get equation (4): 

Vk(t-T)-Vkil1(t-T) =- mT Vk(t-T) +nT bkil (t). (4) 

Equation (4) is the fundamental equation when the car space is expressed 
as a linear function of velocities. We have already discussed the case 
m-0, [21 and we notice here that the same form of equation for m =0 
had been proposed by Chandler, Herman, and Montroll a little earlier and 
quite independently. 

INDICIAL RESPONSE AND ITS STABILITY 

IF WEx make the Laplace transform of both sides of equation (4): 

Vk(s) eTs-_Vk+1 (S) e0T 

-mTs Vk(S) CTS+nTs VkIl(S)+nT CT, vk(O) -nT vO+1(O), 

or 

1+mTs ~-Ts Vs) mTeT k0 nT Tv~() 5 
Vk+l ( S) = ++ ,er Vk ( S)- Vk eTs*( 0) + n-s+ -k8U+1 ( 0) 1 (5 ) 

nk+1\ST nTs+e-Ts nTs+e-T 

where Vk(S) = vk(t) e-ts dt, Vk+l(S)z Vk+l(t) e-ts dt, 

and Vk(O) and Vk+1(O) are the initial velocities at t=O. By equation (5) 
we can find the motion of the following vehicle if the motion of the lead 
car is given. Although we can consider several types of motion for the 
lead car, we take the simplest case. Namely all cars are standing when 
t<0, and the lead car starts to move at t 0 with its initial velocity vo. 
In this paper, we hereafter call the behavior (output) of the following car 
corresponding to this behavior (input) of lead car as indicial response. 

The initial conditions are v, (t) =vo for t _ 0, or VI (s) z=VO/8, Vk+1(O) =0 
(kI =1, 2, 3, *.*). Therefore, using equation (5) repeatedly we find: 

V2 [C Ts/(nTs+e-T)](vo/s), 

V3-[e Ts/(nTs+e-T)]2 (1 +mTs) (vo/s), (6) 

Vk+l= [e-T /(nTs+e Ts)Ik (1 +mTs)k-1 (Vo/). 
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Safety Index for Traffic with Linear Spacing 707 

Expanding equation (6) in the power series to compute V2, v3, we get 

72 (s) eTs e-2 Ts e-3 Ts e-4 Ts e-5 Ts 
_= _ - _ 

_ 
_ . . . 

vo nTs n2T2s2 n3T3s3 n4T4s4 n5T5s5 

V3 ( s) e2Ts 2 e 3Ts 3 e4Ts 4 e-5Ss 
-+ - ~~~~~+(7) 

v0 n2T2s3 n3T3s4 n4T4s5 n5Ts56 

e2 2T e 3 Ts -4 Ts e-5Ts 
_+MnT . . _ _ ........... _ 

L (nTs)2 (nTs)3 
Therefore the indicial responses required are given by 

v2(t) 1 ( 2 (t-3-1 n 4 
___ n ( 2 n )2?6n \T/24fl4 

120 5 ( 720 n6 (5040 n 

v3(t) 1 2 _ 1 t 3 1 (t 4 1 

+ml(_ 2) (t~ _3) + 1 (_ 4) _ t 5) 

VO 2 n2 (4- 3)- n3 ( T ) 8 n4 ( 0 5 ) 

+144 b6 (y -6)-8 2 (T-7) +.. 

?24 3+ 4 

As seen in equation (8), v2(t) is independent of m. Figure 2 shows the 
indicial responses computed from equation (8) for several values of m 
and n. As shown in Fig. 2 the amplitude of response becomes larger as 
m becomes larger or n smaller. 

Next, we consider the response of a following vehicle when the lead car 
of a line of vehicles that are moving with uniform velocity vo stops suddenly 
at t==O. The initial conditions are v1(t)=0 for t_0, vk41(0) =vO 
(k=1, 2, 3, ); therefore 

V2 =F(s) vo, 

V3=E(s) V2+D(s) vo=E(s) F(s) vo+D(s) vo, 
(9) 

Vkc+=E(s) Vk+D(s) vo 

=Ek-l(s) F(s) vo+Ek-2(s) D(s) vo+** +D(s) Vo, 

where D(s) = (nT-mT e-Ts)/(nTs+e-Ts), 

E(s) =(+mTs) e-Ts/( nTs+-), 
F(s) =nT/(nTs+e Ts). 
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708 Kometani and Sasaki 
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Fig. 2 (a). Indicial, response of the following vehicles for n-1. 

2.0- ---~~-~r- ----- ---- _______T - -- - -- - - -- --- 

50 ------- ------- ' 

sc ]. O 1----- --- X 

.e5 --- _-- 
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Fig. 2 (b). Indicial response of the following vehicles for n=2. 

2.0 - - - - ----- - ----- -r-- 

0.5 

------ - 
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- 

0 1 2 3 4 5 7 8 9 
t/T 

Fig. 2 (c). Indicial response of the following vehicles for n=3. 
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Safety Index for Traffic with Linear Spacing 709 

We can see from equation (9) that V2 is independent of m. If we designate 
the two velocities V in equation (6) and equation (9) as Vstart and Vstop, 

Vk+1,stop/V0-E (s) F(s) vo 

+D(s) [Ek-2( S+Ek-3(s) + +E(s) +1] 
-Ek-1(s) [D(s) +mT G(s)] 

+D(s) [Ekk-2( S+Ek-3(s) + +E(s) +1] 
-mT G(s) Fkl(s) +D(s) [1 -Ek(s)I/[l -E(s)] 
= MT G(s) E k-I(s) + [1-Ek(S)]IS( 10) 

=G(s) Ek-l (s)/s+mT G(s) Ek-l(s) 

+ [1-E k( S)]_ ]sVkil ,start/vo 

=[(1+mTs)/s] G(s) Ek l(s) 

+11/s-E k(s)/s Vk+1,start/V0 

-1/s- Vk+l,start/VO. 

The inverse transform of equation (10) gives 

Vk~l start( t ) +Vk +,top ( t) OvaO. (k = 17 2,3, ... ) (1 1) 

If we can find either one of Vstart or vstop, we can calculate the other by equa- 
tion (11). 

Next we consider the stability of indicial response. If the indicial 
response approaches its final value vo as time elapses, the response is stable, 

V 
I, TS 

Vk+I 

Fig. 3. Block diagram of a queue of traffic. 

but if the indicial response shows a permanent oscillation, the response is 
unstable. 

As the transfer function of equation (5) is given by 

E(s) = 
e-TS (1+mTs)/(nTs+e-Ts), (12) 

its block diagram is shown as a servo system as in Fig. 3. If the char- 
acteristic equation of equation (12), 

nTs+e-s O= (13) 

is assumed to have the following type of roots, 

Si= _ __~ o Ii =, {n12 52 3, {14 
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710 Kometani and Sasaki 

then these characteristic roots can be calculated from 

____ e2/ 
2 T 2 (15) 

~tanwiT' V(nT) 2 

The indicial response of the second vehicle (just behind the lead car) is 

V2(t = vo f j0 (e-Ts) (est) d 
27rjJ 
= 

j( s (nTs+e Ts) ds (16) 

=vo E residues of [P(s) est/Q(s)], 

where P(s) =e-Ts, Q(s) =s(nTs+e-TS) . Since estP(s)/Q(s) is regular 
except for s =0 and s = Si, its residue is unity at the simple pole s =0, and 
the residues at the simple pole s=Si are described by 

e8i t P(Si)1Q' (Si) = [-1/ ( 1+ T8)] e8i t. (i = 1n 2, 35,*) 

Hence we have from equation (16) 

v2(t) =vO [?1Z+ E +i-/(?TSi) edit]. (17) 

If we put Rim-1/(1+TS), (18) 

corresponding to a pair of conjugate imaginary roots 

Si =-cTijwi, (19) 

we have v2(t) =vo [1+2ZE Rij e-ft cos(wit+argRi]. (20) 

If we denote by 81 the nearest root from the imaginary axis of all the 
characteristic roots, the response is represented approximately by a com- 
ponent response of 81, that is, 

v2(t) = vo [1+2 1R11 e 't cos(wit+argRli)]. (21) 

Equation (21) coincides well for t/T> 1 with the solution obtained by the 
above mentioned power series method. 

As shown in equation (20), the real parts of all the characteristic roots 
should be negative when the indicial response of the second vehicle is 
stable. Since ar = 0 at the stability limit, we can derive directly from equa- 
tion (15) the condition defining the limit of stability, 

n= 2/r. (22) 

On the other hand, the critical condition in which oscillation disappears 
may be similarly derived from co = 0, that is 

n=e. (23) 
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Safety Index for Traffic with Linear Spacing 711 

Next we consider the general case. The indicial response for (k+l)th 
vehicle is given from equation (6) as 

v 

p+joo 

e-kTs (1+mTs)k 

e-1St 
2irjJ j s 

(nTs+eTs)k (24) 
=Vo E residues of [K(s) estj, 

where K(s) = e k7s (1 +mTs)k 1/s(nTs+e-Ts)k. 
As the characteristic equation for K(s) is 

s (nTs+e T8)k _O, (25) 

we have in general 

VkiOt 
_ 

1+ (; 1 ) i [(s-ad) K(s)].,=,S 

tk-2 eSit Fk 1 t-3 Sit d21 
+ (s-2SKs)K+s l+ [ -(s- s5)I((s)I (26) (k -2)! Ld ~2! (k-3)! Lds2 

+ + (k -I) [dkl(s-8) K(s)] 

As is known from equation (26), the indicial response has some component 
responses of the form tk-le-,it when the characteristic equation has the 
root of kth order. As long as oi> 0 these component responses will be 
damped as time elapses. 

Since the indicial responses may be represented approximately in terms 
of 8 as mentioned above, the stability condition in general is n> 2/7r, and 
the critical condition in which oscillation disappears is n = e. Hence we 
have the following conclusion: If a car space is given by the linear form of 
both velocities of the lead car and the following car, the indicial response of each 
vehicle in a line of traffic is unstable for n < 2/7r, stable with oscillation for 
2/r < n <e, and stable without oscillation for n ? e. 

Although we have already had the above conclusion for the case of 
m = 0, we have found here that m does not affect the stability of the indicial 
response because m does not appear in the characteristic equation. As can 
be supposed from equation (5) and equation (24), the above mentioned 
conclusion will hold not only in the case of indicial response but also for 
all the behavior of the lead car provided that VI (s) has no characteristic 
root except at s = 0, namely, sV1(s) is regular. This is because the char- 
acteristic root which controls the stability of transient response is the 
same. It is important that the stability condition of transient response is 
independent of m and depends on n only. 
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712 Kometani and Sasaki 

FREQUENCY RESPONSE AND STABILITY OF PROPAGATION OF 

A SINUSOIDAL DISTURBANCE 

HERE WE investigate the manner in which the disturbance propagates 
down a line of vehicles when the lead car suffers a sinusoidal disturbance. 
We call it unstable if the disturbance of the lead car propagates down mag- 
nified, and call it stable if it propagates down damped. 

As is known from equation (5), the transfer function of (k+1)th 
vehicle is given by 

Ek+](s) =E(s) -zz[eG (1+mTs)/(nTs+eT )]. (27) 

Therefore, if the disturbance suffered by the lead car is expressed by 

a= A sinwt, (28) 

the frequency response of (k+l)th vehicle after elapse of sufficient time 
is 

z==Z sin(cot+sn), (29) 

where Z= A jEk+l (jW) I = A I JE(jw) 1}7(0 
p==tan' Im [Ek+lQ(jW)]/Re [Ek+1(jcO)]. I ) 

The initial sinusoidal oscillation of the lead car is transmitted to the 
following vehicles magnified if IE(jw) I > 1 and is transmitted damped if 

IE(icj) I < 1. Hence the stability condition of the propagation is IE(jco) I < 1, 
or more explicitly 

Ie'i'T (I+jmwT)/(.jncwT+e T) T1<1. (31) 
Since we have 

IE(jw)= I = 
V1?n 2W2T2-2 nwT sinwT' (2 

(p tan-I mW T-nw T cosw T-mnW T sinw T 
. I- ncT sincwT+mnW2 T2 coscwT 

the stability condition is given by 

(n2-_ m2) /n > 2 sinw T/cwT. (33) 

As has already been investigated, the stability condition in case of m - 0 is 
given by n>2 sincwT/lT, so the condition for stability for all cwT is n>2. 
This is a special case of equation (33). As sinwT/(wT) is less than unity 
for all wT, the sufficient condition for stability for a disturbance of any fre- 
quency is given by 

no> ?+m2. (34) 

The interesting case is the one for n = m. In this case, as is known from 
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Safety Index for Traffic with Linear Spacing 713 

equation (33) the stability condition exists quite independent of m and n, 
and is stable if sincT <O, namely 

(2i-1) ir<T<2iir. (i=1,2,3, .) (35) 

It is always unstable for wT which does not satisfy equation (35) provided 
wTO. 

Figure 4 shows the amplitude of the frequency responses computed 
from equation (32) for several values of m and n. The case for n = m is 
illustrated in Fig. 5. As is known from Figs. 4 and 5, the amplitudes of 
the frequency response become larger if m becomes larger and n becomes 
smaller. In general, we find that disturbances of high frequency are not 
propagated down a line of vehicles. 

Clearly, it follows from equation (35) that each response in Fig. 5 coin- 
cides at a point C when coT = r, and the left side of the point C is the un- 
stable domain. 

SAFETY INDEX 

LET US consider that a line of vehicles is moving in one direction with a 
uniform speed vo and the lead car has suffered a sinusoidal disturbance at 
t w 0. The behavior of the lead car is expressed by 

(vov-A sincwt for t> O 
vi(t) = fl (36) 

Ivo for t<O, 
where vo > A. 

The behavior of the lead car is propagated to the following vehicles with 
the lag of reaction time T. After a sufficient time, the (k+1)th vehicle 
reaches a steady state motion expressed by 

Vk+l(t) =vo-A jEk+l(jco) sin| cot+argEk~l(jco)J. (37) 

We will investigate the safety of cars under this steady state condition. 
When all vehicles are moving with a uniform speed vo the car space is ex- 
pressed by (n-m) Tvo+bo as is known from Fig. 1, so that the car space 
ay (t) between the lead car and the second car at a time t after the lead car 
has begun to behave as shown in equation (36) is given by 

rt rt 
y(t) =(n-rm) Tvo+bo+f vi(t) dt-f v2(t) dt, (38) 

where limtooy (t) = (n-m) Tvo+ bo. 

If a line of vehicles is in such a steady state condition and the lead car 
is suddenly stopped by any obstacle, the driver of the second car will apply 
the brakes promptly. But if the car space is not greater than 

ft+ d 
| 2 v( t) dt +,2 V22(t+ T) -yj v12(t) +by (39) 
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9OO --r--- ------- 

8.0 ------------ -- ----- 

6.0 - 1;-------- 

wvT 

Fig. 4 (a). Amplitude of frequency response for n 1. 
4.0 X ----- - - 

0 1.0 2.'0 - .0- ~ 4.0 

w 

Fig. 4 (b). Amplitude of frequency response for n=2. 

2.0 - - - - - - - - - - -2. z)1.5 _--------- 

1.0 - - - - - - - 1 

x0.5 ------------ 

l ~ ~~~~ I - 

- 1.0 2.0 3.0 4.0 
wT 

Fig. 4 (c). Amplitude of frequency response for n=3. 

This content downloaded from 169.229.32.137 on Thu, 8 May 2014 20:09:21 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Safety Index for Traffic with Linear Spacing 715 

the second car cannot escape a rear end collision with the lead car. We 
define A, and b2 to be the deceleration of the lead car and the second car 
respectively, T the reaction time, and b the car length. 

We are considering the steady state condition, v1 and v2 in equation (39) 
as given in equations (36) and (37). But we cannot use equation (37) 
for v2 because the third term of equation (38) has an integration whose 
lower limit is zero. Therefore we suffer from the effect of the transient 
response of v2, and must first find 

at at 

rt) , dt- |2 dt, (40) 

where limtpO 1 (t) == O. 

If we express the Laplace transform of P(t) as F(s), 

F(S) = [VI(S) - V2(S)]IS, (41) 

from equation (5) the following relation exists: 

(=+mes) ____ vi(O) + nT V2(O ) 

n Ts +e-7' nTs +e-TS nTs+e-T8 

Therefore 

,()nT-mT eGTS mTeGTS 
nTs+e-Ts s (nTs+eTs)) (42) 

s (nTs-eTr) V2(0) 

Considering the following initial conditions: 

vi(O) =v2(0) =Vo, Vi(s) (vo/s) - (A W/s2+J), (43) 

and substituting equation (43) into equation (42), we can get 

F )- Awo (nT-mT-TS) 
(s2+w2)(nTs+e-Tsj-(P(S)/Q(s). 

The characteristic roots of equation (44) are s=Sj, which are given by 
equation (14), equation (15), and s= +jw, the roots of s2+Cw2= O. 

The Laplace transform of equation (44) is given by 

Awo f 0 nT-~mT e T" S F(t) 2= r Jjg ( )nT 6ea) est ds. (45) 

The residue of et (P(s)/Q(s) at s=Si is 
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716 Kometanti and Sasaki 

and therefore the term concerning the characteristic root S that will appear 
in computing equation (45) diminishes as time elapses provided ci> 0. 
On the other hand, the residue of eSt P(s()/(s(s) at a simple pole s=jw is 
given by 

R e AT n (-nwT+sinwT+mwT coscoT) +j (m-mnwT sinwT-n coswT) (46) 
2(1+n2 c2T2-2 ncoT sinwT) - ' 

4,0 -----------~ ~~~~- ------- ------------- r---- - - 

3,5 --------------~--- 

3.0 -------------- -_ __ ^ ------_ __ __ _ __ _ ------------ 

2.5 -------- _----- --- -- -- - - -- - - - -- -- - -- -- -- - 

2.0 ----------- 

1.0 -------- 

0.5 ----- - ----- --- -- -- - - - a 

0 1.0 2,0 3.0 . 4.0 
w T 

Fig. 5. Amplitulde of frequency response for n~m. 

and the residue at s-- = s 

R' t =An (-ncoT+sincoT+mcoT coscoT) -j (m-mnoT sinwT-n coscoT) --pxt (47) R'e 
-& 

AT 
2(1 +n2rW2T2-2nwT sinwT) v 

Since the following relations exist: 

IRI= IR'j, argR-argR', (48) 

rearranging equations (46) and (47) we can get: 

r(t) =2 IRI cos(cot+argR). (49) 

Putting U=2 R/AT, (50) 

r(t)- -AT I U1 cos(ctt+argU), (51) 

where U /l -+m2-2 
mn coswT 

Iwher = +n2,W2 T2-2 nwT sinwT' 

argU=tan-' m-mnwT sinwT-n coscoT 
n(-mwoT+sinwT+mwT coswT) 
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6 0 ------- ----t 
- -- r 

g4.0 ------ I | 0 

SC--- ------~~--- --- 

3.0-- -- 

I'O~~~~~~~~~~ 
o 05 1.0 1s 2,0 2.5 3.0 325 4.0 4.5 

T 

Fig. 6 (a). Amplitude of fluctuation of a car spacing from 
constant spacing for n=1. 

L O ------__ _ _ _ _ _ 1 - ------__ 

QO .5 ------------ 

0 0.5 1.0 .1.5 2.0 2.5 3.0 3,5 4.0 4.5 
lwT 

Fig. 6 (b). Amplitude of fluctuation of a car spacing from 
constant spacing for n2. 

.o Xl-~--X 

-r~~----------r- ------X 
- r~~~~~-- -- - I - 

:2.0 Xi t , X 1 t t , I 

050 

0.5 l.O 1.5 2.0 2.5 3.0 3,5 4 0 4.5 

Fig. 6 (c). Amplitude of fluctuation of a car spacing from 
constant spacing for n=3. 
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Figure 6 illustrates the values of IU1 for several m and n computed by 
equation (52). It is shown that the maximum amplitude of fluctuation 
increases as n becomes smaller or as the difference between n and m be- 
comes larger. From equation (52) can be found the following relation 

limits I U(coT) I=n-m. (53) 

Hence we obtain, by substituting equation (51) into equation (38), 

,y(t)-(nr-m) Tvo+bo-AT I U1 cos(wt+argU). (54) 

On the other hand, we have the following relation from equation (37): 
ft+r 

V2 dt=vo T-ATW sin(wt+?'), (55) 

where W= (2/1T) JEj sin(?e, cT), (56) 

so'= 4 wT+p. 

Therefore, if the lead car stopped suddenly during steady state sinusoidal 
fluctuations, the necessary condition for the following vehicle not to collide 
with the rear of the lead car is given from equations (54) and (39) as 
follows: 

(n-rm-1) Tvo+bo-b-AT JUj cos(cot+argU) (57) 
+ATW sin(t+sp') > ,22v22(t+ T) -,1 v12(t) . 

If we put to-I= (bo-b)/T, Al' =A.1/T, A2'z.2/T, (58) 

equation (57) becomes 

(n-m-1i) vo+lo-l-A jUt cos(wt+argU) 

+AW sin(oT+p') +,Al' V12(t) - A2' V2 2(t+T) >O0. 

Developing equation (59) for convenience of computation, we have 

(n-rn-1) vo+to-l+A ( A1 coscot+ A2 sinwt)+jq' [vo-A sincot}2 

-g2'[vO-A (01 COS(Ot+ 02 sinCt)] 2 > 60) 

where A -W sin (?Sg x T + ) -j U I cos (arg U), 

A2= W cos(? CT+ ) + | UI sin(argU), (61) 

01=JE) sin(coT+p), 

02= JE cos(wT+-p). 

Here Al, A2, 01, and 02 are all the function of coT and have the following 
properties: 

limbTo (All 01) =? limwr.0A 02) (62) 

limbTos A2 =n-m+ 1, 1iM,,T--* (Al / 21, 01; 02) = 0- 
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If the equation (59) or equation (60) always exists, the traffic flow is 
safe for sinusoidal disturbance. We denote the probability for the exist- 
ence of equation (59) or equation (60) at an arbitrary time t as the safety 
index for the traffic flow, defined as follows: 

safety index= Pr[t; equation (60)]. (63) 

Figure 7 shows a numerical example for a case of vo = 40 km/h, 
A =20 km/h, lo-1 -2.2124 m/sec provided that Al'= A2'-pt. 

n=3 .m=0 _=0.07372 1 8 0 I I- I I I 

0.6 ------- --- --- ----d---o 4~-~r~~~t 
i 0.12 755 1 I 

n 1 , all~~~~~~~~~~~~~~~1 

0 a4 [- -----4--- ------- ----- At4 ___;+ _J 

| absolutely zngerou I 
I lIg on I 

- j5 1.0 1.5 2 0 2.5 3 -0 3-5 4.0 4. 

Figs 7. Safety index varying with wet (vo=40 km/h, A-=20 km/h, 
T=1. .13 sec. I, -I =-2.2124 m/see) . 

The value of the safety index for cwT-0 is given from equation (62): 

Pr[sinwtt >-{ (n-m- 1) vo+ lo-I} /{ (n m +1] ) Al}, ( 64 ) 

whereas the value of the safety index for wT--) Oo is given from 

P [inwt < ~i I ( ( 65 ) 

Here the following relation is assumed: r ,os2 >(n-m-1) vo+lo1. As is 
known from equations (64) and (65), the values of the safety indices when 
cwT0+r and MTt depend remarkably on the value of n-m, and the 
safety index when cwT0- is independent of ,u'. The dotted area in Fig. 7 
is a domain where the safety index has no meaning, because a rear end 
collision certainly will occur. The condition of existence for these ab- 
solutely dangerous frequency id fo gTenO equations (54) and (58): 

(n-m) vo+lo-1 -A | U(nwT)-m ) (66) 
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CONCLUSION 

SOME properties of the safety index as suggested from Fig. 7 are: 

1. The safety is determined almost completely by the difference between n 
and m, and the smaller the difference, the less the effect of braking ability and co 
on the safety index. Conversely, as the difference becomes larger the safety index 
increases rapidly and it becomes necessary to depend on the braking ability and W. 

2. Except for extraordinarily large values of A, the safety index is generally likely 
to increase with an increase of coT. But the values of &t for the disturbances suf- 
fered in actual traffic flow are considered to vary between 0.1 and 1.5, so that it will 
be sufficient in actual traffic to deal with the safety index for relatively small values 
of co. 

3. Since the safety index is a proposal to quantify the safety of rear end collision 
when the lead car and the following car behave with sinusoidal motion, it is required 
for safety that cwT not satisfy equation (66). 
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