Stage-2023/modelv.py
2023-07-27 15:36:56 +02:00

66 lines
1.7 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import time
from colour import Color
t0 = 0
tf = 20
# tf=3
dt = 0.5
t = t0
U = 1.25 # vitesse m.s-¹
Wm = 0.3 # distance minimale entre la voiture et celle qui la précède m
Ws = 0.9 # m
def rainbow_gradient(num_colors):
colors = []
base_color = Color("violet")
gradient = list(base_color.range_to(Color("red"), num_colors))
for color in gradient:
hex_code = color.hex_l
colors.append(hex_code)
return colors
colors = rainbow_gradient(11)
def phi(ww): # prend en entrée la distance entre les deux véhicules
PHI = (U*(1 - np.exp(- (ww-Wm)/Ws)))
return (ww >= Wm)* PHI # retourne la vitesse du véhicule
y = np.linspace(0, 0, 11)
xxbase = np.linspace(0, 1, 11)
def position(fposition, newv):
newp = fposition + newv * dt
return newp
def vitesses(fposition):
dist = np.diff(fposition)
vitesses = phi(dist)
newv = np.insert(vitesses, 10, 1.25)
return newv
xxold = xxbase.copy()
while(t<tf):
plt.figure(1,figsize=[16,9])
plt.clf()
plt.xlim([-1,20])
plt.ylim([-0.5, 1.5])
vt = vitesses(xxold)
xx = position(xxold, vt)
# color = ['#ff0000', '#ff5300', '#ffa500', '#ffd200', '#ffff00', '#80c000', '#008000', '#004080', '#0000ff', '#2600c1', '#4b0082']
plt.scatter(xx, vt)
plt.scatter(xx, y, c=colors)
plt.plot([0,20],[1.25, 1.25], color='k', linestyle='-', linewidth=1)
plt.xlabel('distance w en m')
plt.ylabel('vitesse en m.s-¹')
plt.title('Evolution de la vitesse des voitures\nvitesse du leader : ' + str(U) + 'm.s-¹\ndistance minimale entre deux voitures : ' + str(Wm) + 'm')
plt.draw()
# plt.savefig(str(t)+'.png')
plt.pause(0.2)
t += dt
xxold = xx.copy()