Stage-2023/polaired.py
2023-07-18 16:20:23 +02:00

98 lines
2.6 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import time
from colour import Color
t0 = 0
tf = 100
dt = 0.5
t = t0
nbv = 20
def rainbow_gradient(num_colors):
colors = []
base_color = Color("violet")
gradient = list(base_color.range_to(Color("red"), num_colors))
for color in gradient:
hex_code = color.hex_l
colors.append(hex_code)
return colors
colors = rainbow_gradient(nbv)
def status(distances):
num_colors = len(distances)
colors = []
base_color = Color("green")
target_color = Color("red")
luminance_start = base_color.get_luminance()
luminance_end = target_color.get_luminance()
for i in range(num_colors):
moydist = distances[i]
t = i / (num_colors - 1)
adjusted_luminance = luminance_start + (luminance_end - luminance_start) * (1 - t) * (moydist - 1) / 18
color = Color(rgb=(base_color.rgb[0] * (1 - t) + target_color.rgb[0] * t,
base_color.rgb[1] * (1 - t) + target_color.rgb[1] * t,
base_color.rgb[2] * (1 - t) + target_color.rgb[2] * t))
color.set_luminance(adjusted_luminance)
hex_code = color.hex_l
colors.append(hex_code)
return colors
U = 1.25 # vitesse m.s-¹
Wm = 0.3 # distance minimale entre la voiture et celle qui la précède m
Ws = 0.9 # m
def phi(ww): # prend en entrée la distance entre les deux véhicules
PHI = (U*(1 - np.exp(- (ww-Wm)/Ws)))
return (ww >= Wm)* PHI # retourne la vitesse du véhicule
y = np.linspace(1, 1, nbv)
xxbase = np.linspace(0, 1, nbv)
def distances(fposition):
# print('fposition', fposition)
dist = np.diff(fposition)
inter = fposition[0]+20-fposition[-1]
newdist = np.insert(dist, len(dist), inter)
return newdist
def position(fposition, newv):
newp = fposition + newv * dt
return newp
xxold = xxbase.copy()
while(t<tf):
plt.figure(1,figsize=[16,9])
plt.clf()
nb = 360
r=np.linspace(1,1,nb)
theta=np.linspace(0,2*np.pi,nb)
plt.polar(theta, r)
# plt.scatter(1*np.pi, 0.5)
dst = distances(xxold)
statusc = status(dst)
print(statusc)
vt = phi(dst)
# print('vitesses : ', vt)
xx = position(xxold, vt)
# print('position : ', xx)
plt.scatter(xx/10*np.pi, y, c=colors)
for i in range(len(xx)):
plt.plot(xx[i]/10*np.pi, y[i], color=statusc[i])
plt.title('Vitesse maximale : ' + str(U) + 'm.s-¹\ndistance minimale entre deux voitures : ' + str(Wm) + 'm\nnombre de voitures : ' + str(nbv))
plt.draw()
plt.pause(0.00001)
t += dt
xxold = xx.copy()