Stage-2023/test/status.py
√(noham)² 101732b815 changes
2023-07-18 16:57:46 +02:00

66 lines
1.9 KiB
Python

from colour import Color
import matplotlib.pyplot as plt
def rainbow_gradient(distances):
num_colors = len(distances)
colors = []
base_color = Color("green")
target_color = Color("red")
luminance_start = base_color.get_luminance()
luminance_end = target_color.get_luminance()
for i in range(num_colors):
moydist = distances[i]
t = i / (num_colors - 1) # Interpolation paramètre t
adjusted_luminance = luminance_start + (luminance_end - luminance_start) * (1 - t) * (moydist - 1) / 18
color = Color(rgb=(base_color.rgb[0] * (1 - t) + target_color.rgb[0] * t,
base_color.rgb[1] * (1 - t) + target_color.rgb[1] * t,
base_color.rgb[2] * (1 - t) + target_color.rgb[2] * t))
color.set_luminance(adjusted_luminance)
hex_code = color.hex_l
colors.append(hex_code)
return colors
distances = [0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 19.0]
gradient = rainbow_gradient(distances)
# Create a figure and axis
fig, ax = plt.subplots()
# Set the background color of the plot
fig.set_facecolor('white')
# Hide the axis labels
ax.set_axis_off()
# Calculate the width and height of each color patch
width = 1.0 / len(gradient)
height = 1.0
# Iterate through the colors and plot a rectangle for each
for i, color in enumerate(gradient):
# Calculate the x-coordinate of the color patch
x = i * width
# Plot the color patch
rect = plt.Rectangle((x, 0), width, height, facecolor=color)
ax.add_patch(rect)
# Set the aspect ratio to 'auto' to ensure the patches are square
ax.set_aspect('auto')
# Set the limits of the x-axis
ax.set_xlim(0, 1)
# Display the plot
plt.show()