mirror of
https://github.com/NohamR/Stage-2023.git
synced 2025-05-24 00:49:03 +00:00
126 lines
3.3 KiB
Python
126 lines
3.3 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import time
|
|
from colour import Color
|
|
|
|
t0 = 0
|
|
tf = 100
|
|
dt = 0.5
|
|
t = t0
|
|
|
|
nbv = 20
|
|
|
|
def rainbow_gradient(num_colors):
|
|
colors = []
|
|
base_color = Color("violet")
|
|
gradient = list(base_color.range_to(Color("red"), num_colors))
|
|
for color in gradient:
|
|
hex_code = color.hex_l
|
|
colors.append(hex_code)
|
|
return colors
|
|
colors = rainbow_gradient(nbv)
|
|
|
|
def status(distances):
|
|
num_colors = len(distances)
|
|
colors = []
|
|
base_color = Color("green")
|
|
target_color = Color("red")
|
|
luminance_start = base_color.get_luminance()
|
|
luminance_end = target_color.get_luminance()
|
|
for i in range(num_colors):
|
|
moydist = distances[i]
|
|
t = i / (num_colors - 1)
|
|
adjusted_luminance = luminance_start + (luminance_end - luminance_start) * (1 - t) * (moydist - 1) / 18
|
|
color = Color(rgb=(base_color.rgb[0] * (1 - t) + target_color.rgb[0] * t,
|
|
base_color.rgb[1] * (1 - t) + target_color.rgb[1] * t,
|
|
base_color.rgb[2] * (1 - t) + target_color.rgb[2] * t))
|
|
color.set_luminance(adjusted_luminance)
|
|
hex_code = color.hex_l
|
|
colors.append(hex_code)
|
|
return colors
|
|
|
|
|
|
U = 1.25 # vitesse m.s-¹
|
|
Wm = 0.3 # distance minimale entre la voiture et celle qui la précède m
|
|
Ws = 0.9 # m
|
|
|
|
def phi(ww): # prend en entrée la distance entre les deux véhicules
|
|
PHI = (U*(1 - np.exp(- (ww-Wm)/Ws)))
|
|
return (ww >= Wm)* PHI # retourne la vitesse du véhicule
|
|
|
|
y = np.linspace(1, 1, nbv)
|
|
xxbase = np.linspace(0, 1, nbv)
|
|
|
|
def distances(fposition):
|
|
# print('fposition', fposition)
|
|
dist = np.diff(fposition)
|
|
inter = fposition[0]+20-fposition[-1]
|
|
newdist = np.insert(dist, len(dist), inter)
|
|
return newdist
|
|
|
|
def position(fposition, newv):
|
|
newp = fposition + newv * dt
|
|
return newp
|
|
|
|
xxold = xxbase.copy()
|
|
|
|
# while(t<tf):
|
|
# plt.figure(1,figsize=[16,9])
|
|
# plt.clf()
|
|
|
|
# nb = 360
|
|
|
|
# r=np.linspace(1,1,nb)
|
|
# theta=np.linspace(0,2*np.pi,nb)
|
|
|
|
# plt.polar(theta, r)
|
|
# # plt.scatter(1*np.pi, 0.5)
|
|
|
|
# dst = distances(xxold)
|
|
# statusc = status(dst)
|
|
# print(statusc)
|
|
|
|
# vt = phi(dst)
|
|
# # print('vitesses : ', vt)
|
|
|
|
# xx = position(xxold, vt)
|
|
# # print('position : ', xx)
|
|
|
|
# plt.scatter(xx/10*np.pi, y, c=colors)
|
|
|
|
# for i in range(len(xx)):
|
|
# plt.plot(xx[i]/10*np.pi, y[i], color=statusc[i])
|
|
|
|
# plt.title('Vitesse maximale : ' + str(U) + 'm.s-¹\ndistance minimale entre deux voitures : ' + str(Wm) + 'm\nnombre de voitures : ' + str(nbv))
|
|
# plt.draw()
|
|
# plt.pause(0.00001)
|
|
# t += dt
|
|
# xxold = xx.copy()
|
|
|
|
while(t < tf):
|
|
plt.figure(1, figsize=[16, 9])
|
|
plt.clf()
|
|
|
|
nb = 360
|
|
r = np.linspace(1, 1, nb)
|
|
theta = np.linspace(0, 2 * np.pi, nb)
|
|
|
|
plt.polar(theta, r, alpha=0)
|
|
|
|
dst = distances(xxold)
|
|
statusc = status(dst)
|
|
|
|
vt = phi(dst)
|
|
xx = position(xxold, vt)
|
|
|
|
plt.scatter(xx/10 * np.pi, y, c=colors)
|
|
|
|
for i in range(len(xx)-1):
|
|
plt.plot([xx[i]/10 * np.pi, xx[i+1]/10 * np.pi], [y[i], y[i+1]], color=statusc[i])
|
|
|
|
plt.title('Vitesse maximale : ' + str(U) + ' m/s\ndistance minimale entre deux voitures : ' + str(Wm) + ' m\nnombre de voitures : ' + str(nbv))
|
|
plt.draw()
|
|
plt.pause(0.00001)
|
|
t += dt
|
|
xxold = xx.copy()
|