test setup

This commit is contained in:
√(noham)² 2024-07-17 23:50:12 +02:00
parent 9a48d44095
commit 5c9313c4ca
5 changed files with 353 additions and 0 deletions

View File

@ -0,0 +1,96 @@
import json
import os, sys
import math
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns; sns.set() # for plot styling
from PIL import Image
imgsize = int(input("Image size for train and run? "))
print("=> imgsize =",imgsize)
# imgsize = 256
BBDlabeldict = {"runner":0}
datasetpath = '/Users/noham/Documents/GitHub/Stage-2024/test/yolov7-tracker/data/dataset2fps/'
images_path = datasetpath+"images"
labels_path = datasetpath+"labels"
filenames = sorted(os.listdir(images_path))
print("Nb d'images =",len(filenames))
w,h = [] , []
for i,file in enumerate(filenames):
#print(file)
try:
# if True:
im = Image.open(images_path+"/"+file)
img_width = im.width
img_height = im.height
#print(img_width,img_height)
fo = open(images_path.replace("images","labels")+"/"+file.replace("jpg","txt"), "r+")
lines = fo.readlines()
for line in lines:
a = np.array(line.split(" ")).astype(float)
w.append(a[3]*img_width)
h.append(a[4]*img_height)
if (a[3]*img_height<0.001) or (a[4]*img_height<0.001):
print("!! ATTENTION : boite trop petite dans le fichier ",file, "=> il faut vérifier et supprimer la ligne dans le fichier label au format txt !!")
except:
pass
w=np.asarray(w)#+0.001*(np.random.random((len(w),)) - 0.5)
h=np.asarray(h)#+0.001*(np.random.random((len(w),)) - 0.5)
print("h => min =",h.min()," max =",h.max())
print("w => min =",w.min()," max =",h.max())
print("Nb objets entourés =",len(h))
x=[w,h]
x=np.asarray(x)
x=x.transpose()
########################################## K- Means
##########################################
from sklearn.cluster import KMeans
kmeans3 = KMeans(n_clusters=9)
kmeans3.fit(x)
y_kmeans3 = kmeans3.predict(x)
##########################################
centers3 = kmeans3.cluster_centers_
yolo_anchor_average=[]
for ind in range (9):
yolo_anchor_average.append(np.mean(x[y_kmeans3==ind],axis=0))
yolo_anchor_average=np.array(yolo_anchor_average)
plt.scatter(x[:, 0], x[:, 1], c=y_kmeans3, s=2, cmap='viridis')
plt.scatter(yolo_anchor_average[:, 0], yolo_anchor_average[:, 1], c='red', s=50)
yoloV3anchors = yolo_anchor_average
yoloV3anchors[:, 0] =yolo_anchor_average[:, 0] /1920 *imgsize
yoloV3anchors[:, 1] =yolo_anchor_average[:, 1] /1056 *imgsize
yoloV3anchors = np.rint(yoloV3anchors)
fig, ax = plt.subplots()
for ind in range(9):
rectangle= plt.Rectangle((0.5*imgsize-yoloV3anchors[ind,0]/2,0.5*imgsize-yoloV3anchors[ind,1]/2), yoloV3anchors[ind,0],yoloV3anchors[ind,1] , fc='b',edgecolor='b',fill = None)
ax.add_patch(rectangle)
ax.set_aspect(1.0)
plt.axis([0,imgsize,0,imgsize])
plt.savefig(datasetpath+"boites.png",dpi=150)
plt.show()
yoloV3anchors.sort(axis=0)
print("Your custom anchor boxes are {}".format(yoloV3anchors))
F = open(datasetpath+"YOLOV_BDD_Anchors_"+str(imgsize)+".txt", "w")
F.write("{}".format(yoloV3anchors))
F.close()
print("Anchors box for yaml file :")
s_anchors = yoloV3anchors[yoloV3anchors[:, 0].argsort()]
anchor_lists = [s_anchors[i:i+3].tolist() for i in range(0, len(s_anchors), 3)]
# anchor_lists = [[[14.0, 37.0], [15.0, 48.0], [19.0, 53.0]], [[21.0, 70.0], [24.0, 88.0], [31.0, 112.0]], [[34.0, 136.0], [35.0, 155.0], [76.0, 161.0]]]
p = ['] # P3/8', '] # P4/16', '] # P5/32']
out = "anchors:"
for l in anchor_lists:
out += '\n' + " - [" + ", ".join([f"{int(i[0])},{int(i[1])}" for i in l]) + p[anchor_lists.index(l)]
print(out)

View File

@ -0,0 +1,46 @@
# Config file of dataset
DATASET_ROOT: '/home/sylvain.faure/RN/athle/yolov7-tracker/dataset1_2024_06_19/'
SPLIT: train
CATEGORY_NAMES:
- 'coureur'
CATEGORY_DICT:
0: 'coureur'
CERTAIN_SEQS:
-
IGNORE_SEQS: # Seqs you want to ignore
-
YAML_DICT: './data/files_dataset1_2024_06_19.yaml' # NOTE: ONLY for yolo v5 model loader(func DetectMultiBackend)
# Pas utilisé :
#
TRACK_EVAL: # If use TrackEval to evaluate, use these configs
'DISPLAY_LESS_PROGRESS': False
'GT_FOLDER': '/data/wujiapeng/datasets/VisDrone2019/VisDrone2019/VisDrone2019-MOT-test-dev/annotations'
'TRACKERS_FOLDER': './tracker/results'
'SKIP_SPLIT_FOL': True
'TRACKER_SUB_FOLDER': ''
'SEQ_INFO':
'uav0000009_03358_v': 219
'uav0000073_00600_v': 328
'uav0000073_04464_v': 312
'uav0000077_00720_v': 780
'uav0000088_00290_v': 296
'uav0000119_02301_v': 179
'uav0000120_04775_v': 1000
'uav0000161_00000_v': 308
'uav0000188_00000_v': 260
'uav0000201_00000_v': 677
'uav0000249_00001_v': 360
'uav0000249_02688_v': 244
'uav0000297_00000_v': 146
'uav0000297_02761_v': 373
'uav0000306_00230_v': 420
'uav0000355_00001_v': 468
'uav0000370_00001_v': 265
'GT_LOC_FORMAT': '{gt_folder}/{seq}.txt'

63
yolov7-setup/info_SF.txt Normal file
View File

@ -0,0 +1,63 @@
Dépôt :
git clone https://github.com/JackWoo0831/Yolov7-tracker
mv Yolov7-tracker yolov7-tracker
cd yolov7-tracker
git checkout v2 # change to v2 branch !!
conda create -n yolov7 python=3.9 pytorch=1.12 ## ancienne version, comme indiquée dans le readme, sinon numpy.distutils manque...
conda activate yolov7
( si besoin : conda remove --name yolov7 --all )
(yolov7) 14:37:21 sylvain.faure@cinaps ~/RN/athle/yolov7-tracker $ pip3 install numpy scipy matplotlib cython pandas cuda-python
(yolov7) 15:02:25 sylvain.faure@cinaps ~/RN/athle/yolov7-tracker $ pip3 install -r requirements.txt
(yolov7) 15:02:25 sylvain.faure@cinaps ~/RN/athle/yolov7-tracker $ pip3 install ultralytics==8.0.94
#################
## TRAIN
#################
## entrainement avec un premier dataset : ~/RN/athle/yolov7-tracker/dataset1_2024_06_19/
Deux fichiers de configuration créées :
tracker/config_files/dataset1_2024_06_19.yaml
data/files_dataset1_2024_06_19.yaml
yolov7 sur node20 du cluster :
## pour voir la version de CUDA du noeud :
(yolov7) sylvain.faure@node20:~$ nvidia-smi
=> cuda 11.4 sur node20
cf notes d'installation de pytorch pour trouver les bonnes versions : https://pytorch.org/get-started/previous-versions/
pip3 install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118
pip3 install filterpy
## test pour verifier que cuda est bien ok :
>>> import torch
>>> torch.cuda.is_available()
True
## lancement de l'entrainement :
(yolov7) sylvain.faure@node20:~/RN/athle/yolov7-tracker$ python3 train.py --dataset dataset1_2024_06_19__ --workers 1 --device 0 --batch-size 4 --d
ata data/dataset1_2024_06_19/dataset.yaml --img 1280 720 --cfg cfg/training/yolov7x_dataset1_2024_06_19.yaml --weights '' --name yolov7x-dataset1_
2024_06_19 --hyp data/hyp.scratch.custom.yaml
Si erreur : _pickle.UnpicklingError: STACK_GLOBAL requires str
Effacer les fichiers .cache : liste_images.cache par exemple...
(yolov7) sylvain.faure@node20:~/RN/athle/yolov7-tracker$rm data/dataset1_2024_06_19/liste_images.cache
Si erreur np.int => remplacer par des np.int64
Si erreur cuda/cpu dans loss.py :
you have to replace the line in the file yolo7/utils/loss.py
"from_which_layer.append((torch.ones(size=(len(b),)) * i)"
to "from_which_layer.append((torch.ones(size=(len(b),)) * i).to('cuda'))",
and add new line "fg_mask_inboxes = fg_mask_inboxes.to(torch.device('cuda'))"
after "fg_mask_inboxes = matching_matrix.sum(0) > 0.0"
so you need to do it 3 times in the file
ssh cinaps

View File

@ -0,0 +1,73 @@
https://github.com/JackWoo0831/Yolov7-tracker
https://github.com/microsoft/VoTT?tab=readme-ov-file#build-and-run-from-source
# Yolov7-tracker
git clone https://github.com/JackWoo0831/Yolov7-tracker.git
mv Yolov7-tracker yolov7-tracker
cd yolov7-tracker
git checkout v2 # change to v2 branch !!
# Python3.9, Pytorch: 1.12
conda create -n yolov7 python=3.9 pytorch=1.12
conda activate yolov7
pip3 install numpy scipy matplotlib cython pandas cuda-python
## ERROR: Could not find a version that satisfies the requirement cuda-python (from versions: none) Requires-Python >=3.10
pip3 install -r requirements.txt
pip3 install ultralytics==8.0.94
# Setup cluster
nvidia-smi
=> cuda 11.4 sur node20
cf notes d'installation de pytorch pour trouver les bonnes versions : https://pytorch.org/get-started/previous-versions/
pip3 install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118
pip3 install filterpy
>>> import torch
>>> torch.cuda.is_available()
True
# Setup macos
conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 -c pytorch
# Config train
- create config tracker/config_files/dataset1_2024_06_19.yaml
data/files_dataset1_2024_06_19.yaml
- export from VoTT as json
- convert to Yolov using vott2yolov.py (data/dataset1_2024_06_19/vott2yolov.py) -> data/dataset1_2024_06_19/labels/dataset1/ + data/dataset1_2024_06_19/images/dataset1/
- edit data/dataset1_2024_06_19/dataset.yaml
- get box sizes from data/dataset1_2024_06_19/YOLOV_BDD_Anchors_1280.txt -> cfg/training/yolov7x_dataset1_2024_06_19.yaml
structure :
dataset_name
|---images
|---train
|---sequence_name1
|---000001.jpg
|---000002.jpg ...
|---val ...
|---test ...
|
# Launch train
python3 train.py --dataset dataset1_2024_06_19__ --workers 1 --device 0 --batch-size 4 --data data/dataset1_2024_06_19/datasetyaml --img 1280 720 --cfg cfg/training/yolov7x_dataset1_2024_06_19.yaml --weights '' --name yolov7x-dataset1_2024_06_19 --hyp data/hyp.scratch.custom.yaml
Si erreur : _pickle.UnpicklingError: STACK_GLOBAL requires str
Effacer les fichiers .cache : liste_images.cache par exemple...
Si erreur np.int => remplacer par des np.int64
Si erreur cuda/cpu dans loss.py :
you have to replace the line in the file yolo7/utils/loss.py
"from_which_layer.append((torch.ones(size=(len(b),)) * i)"
to "from_which_layer.append((torch.ones(size=(len(b),)) * i).to('cuda'))",
and add new line "fg_mask_inboxes = fg_mask_inboxes.to(torch.device('cuda'))"
after "fg_mask_inboxes = matching_matrix.sum(0) > 0.0"
so you need to do it 3 times in the file
<!-- https://wandb.ai/noham- -->
<!-- /Users/noham/Documents/GitHub/Stage/2024 -->
<!-- /Users/noham/Documents/GitHub/Stage-2024 -->

View File

@ -0,0 +1,75 @@
import numpy as np
import json, sys, os, shutil
## cliquer sur export dans Vott puis :
# prefix = "../exports_VOTT/CH01-20230614-083436-091514-Zone2/vott-json-export/"
# vottjson_filename = "Poulets-export.json"
# cc = 1000000
prefix = "/Users/noham/Documents/GitHub/Stage-2024/yolov7-tracker/"
print('Working folder: ', prefix)
jsonname = 'vott-json-export'
jsonfile = 'track-2fps-export.json'
json_path = prefix + jsonname + '/' + jsonfile
print('Working json file: ', json_path)
jsonfolder = prefix+jsonname
print('Working json folder: ', jsonfolder)
outputname = 'dataset2fps'
print('Ooutput folder: ', outputname)
output = '/Users/noham/Documents/GitHub/Stage-2024/test/yolov7-tracker/data/'+outputname
print('Output folder: ', output)
cc = 0
label = 'runner'
for folder in [output, output+"/images",output+"/labels"]:
if not os.path.exists(folder):
os.makedirs(folder)
with open(json_path, "r") as read_file:
data = json.load(read_file)
imglist = []
for a in data["assets"]:
asset = data["assets"][a]["asset"]
regions = data["assets"][a]["regions"]
img_name = asset["name"]
width = asset["size"]["width"]
height = asset["size"]["height"]
# print("\nimage name : ",img_name," width =",width," height =",height)
shutil.copyfile(jsonfolder+"/"+img_name,output+"/images/image_"+str(cc).zfill(12)+".jpg")
imglist.append(output+"/images/image_"+str(cc).zfill(12)+".jpg")
f = open(output+"/labels/image_"+str(cc).zfill(12)+".txt", "w")
# f = open(prefix+"/"+img_name.replace(".jpg",".txt"), "w")
for region in regions:
boundingBox = region["boundingBox"]
points = region["points"]
# print(" tags =",region["tags"]," boundingBox =",boundingBox," points =",points)
# ## Labels :
# Daprès la doc on doit avoir :
# Label_ID_1 X_CENTER_NORM Y_CENTER_NORM WIDTH_NORM HEIGHT_NORM
# The label_id is the index number in the classes.names file. The id of the first label will be 0 and an increasing integer after that. Note all the position attributes in the label file are not absolute but normalised.
# X_CENTER_NORM = X_CENTER_ABS/IMAGE_WIDTH centre image
# Y_CENTER_NORM = Y_CENTER_ABS/IMAGE_HEIGHT centre image
# WIDTH_NORM = WIDTH_OF_LABEL_ABS/IMAGE_WIDTH largeur boite
# HEIGHT_NORM = HEIGHT_OF_LABEL_ABS/IMAGE_HEIGHT hauteur boite
# dans un repere dont l'origine est en haut a gauche et X de gauche à droite, Y du haut vers le bas
Label_ID = "0"
X_CENTER_NORM = (boundingBox["left"]+boundingBox["width"]/2)/width
Y_CENTER_NORM = (boundingBox["top"]+boundingBox["height"]/2)/height
WIDTH_NORM = boundingBox["width"]/width
HEIGHT_NORM = boundingBox["height"]/height
f.write(Label_ID+" "+str(X_CENTER_NORM)+" "+str(Y_CENTER_NORM)+" "+str(WIDTH_NORM)+" "+str(HEIGHT_NORM)+"\n" ) # 0 = poulet si l'on a qu'une classe d'objet...
f.close()
cc += 1
# print(" written file :",prefix+"/"+img_name.replace(".jpg",".txt"))
with open(output+"/liste_images.txt", "w") as file:
for item in imglist:
file.write(item + "\n")
with open(output+"/dataset.yaml", "w") as file:
file.write(f"""train: data/{outputname}/liste_images.txt
val: data/{outputname}/liste_images.txt
nc: 1
names: ['{label}']""")