mirror of
https://github.com/NohamR/Stage-2024.git
synced 2026-01-11 00:38:15 +00:00
changes + track
This commit is contained in:
@@ -175,7 +175,7 @@ def main(args):
|
||||
exit(0)
|
||||
|
||||
"""3. load sequences"""
|
||||
|
||||
print('stride', stride)
|
||||
dataset = DemoDataset(file_name=args.obj, img_size=model_img_size, model=args.detector, stride=stride, )
|
||||
data_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False)
|
||||
|
||||
|
||||
@@ -103,10 +103,9 @@ class TestDataset(Dataset):
|
||||
padded_img = padded_img.transpose(swap)
|
||||
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
|
||||
return padded_img, r
|
||||
|
||||
def _preprocess_yolov7(self, img, ):
|
||||
|
||||
img_resized = self._letterbox(img, new_shape=self.img_size, stride=self.other_param['stride'], )[0]
|
||||
img_resized = self._letterbox(img, new_shape=self.img_size, stride=32, )[0]
|
||||
img_resized = img_resized[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB
|
||||
img_resized = np.ascontiguousarray(img_resized)
|
||||
|
||||
|
||||
@@ -69,13 +69,13 @@ def ious(atlbrs, btlbrs):
|
||||
|
||||
:rtype ious np.ndarray
|
||||
"""
|
||||
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float)
|
||||
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float64)
|
||||
if ious.size == 0:
|
||||
return ious
|
||||
|
||||
ious = bbox_ious(
|
||||
np.ascontiguousarray(atlbrs, dtype=np.float),
|
||||
np.ascontiguousarray(btlbrs, dtype=np.float)
|
||||
np.ascontiguousarray(atlbrs, dtype=np.float64),
|
||||
np.ascontiguousarray(btlbrs, dtype=np.float64)
|
||||
)
|
||||
|
||||
return ious
|
||||
@@ -129,13 +129,13 @@ def embedding_distance(tracks, detections, metric='cosine'):
|
||||
:return: cost_matrix np.ndarray
|
||||
"""
|
||||
|
||||
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float)
|
||||
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float64)
|
||||
if cost_matrix.size == 0:
|
||||
return cost_matrix
|
||||
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float)
|
||||
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float64)
|
||||
#for i, track in enumerate(tracks):
|
||||
#cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
|
||||
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float)
|
||||
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float64)
|
||||
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Nomalized features
|
||||
return cost_matrix
|
||||
|
||||
|
||||
@@ -32,7 +32,7 @@ class Tracklet(BaseTrack):
|
||||
def __init__(self, tlwh, score, category, motion='byte'):
|
||||
|
||||
# initial position
|
||||
self._tlwh = np.asarray(tlwh, dtype=np.float)
|
||||
self._tlwh = np.asarray(tlwh, dtype=np.float64)
|
||||
self.is_activated = False
|
||||
|
||||
self.score = score
|
||||
@@ -40,6 +40,8 @@ class Tracklet(BaseTrack):
|
||||
|
||||
# kalman
|
||||
self.motion = motion
|
||||
self.motion = 'sort'
|
||||
motion = 'sort'
|
||||
self.kalman_filter = MOTION_MODEL_DICT[motion]()
|
||||
|
||||
self.convert_func = self.__getattribute__('tlwh_to_' + STATE_CONVERT_DICT[motion])
|
||||
@@ -363,4 +365,4 @@ class Tracklet_w_depth(Tracklet):
|
||||
cx = ret[0] + 0.5 * ret[2]
|
||||
y2 = ret[1] + ret[3]
|
||||
lendth = 2000 - y2
|
||||
return np.asarray([cx, y2, lendth], dtype=np.float)
|
||||
return np.asarray([cx, y2, lendth], dtype=np.float64)
|
||||
Reference in New Issue
Block a user